Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 11,
  • pp. 1168-1177
  • (2007)

Spectral Characterization of Eucalyptus Wood

Not Accessible

Your library or personal account may give you access

Abstract

The main difficulties in wood and pulp analyses arise principally from their numerous components with different chemical structures. Therefore, the basic problem in a specific analytical procedure may be the selective separation of the main carbohydrate-derived components from lignin due to their chemical association and structural coexistence. The processing of the wood determines some structural modification in its components depending on the type of wood and the applied procedure. Fourier transform infrared (FT-IR) spectrometry and X-ray diffraction have been applied to analyze <i>Eucalyptus g</i>. wood chips and unbleached and chlorite-bleached pulp. The differences between samples have been established by examination of the spectra of the fractions obtained by successive extraction (acetone extractives, acetone free extractive samples, hemicelluloses, and lignins) by evaluating the derivative spectra, band deconvolution, etc. The energy and the hydrogen bonding distance have been evaluated. The relationship between spectral characteristics and sample composition has been established, as well as the variation of the degree of crystallinity after pulping and bleaching. The integral absorption and lignin/carbohydrate ratios calculated from FT-IR spectra of the IR bands assigned to different bending or stretching in lignin groups are stronger in the spectrum of eucalyptus chips than those from brown stock (BS) pulp spectra because of the smaller total amount of lignin in the latter. FT-IR spectra clearly show that after chlorite bleaching the structure of the wood components is partially modified or removed. Along with FT-IR data, the X-ray results confirmed the low content of lignin in the pulp samples by increasing the calculated values of the crystalline parameters. It was concluded that FT-IR spectroscopy can be used as a quick method to differentiate <i>Eucalyptus globulus</i> samples.

PDF Article
More Like This
In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy

Gaël Latour, Jean-Philippe Echard, Marie Didier, and Marie-Claire Schanne-Klein
Opt. Express 20(22) 24623-24635 (2012)

Wood’s anomalies and spectral uniformity of focusing diffractive optical elements

Hallvard Angelskår, Ib-Rune Johansen, Matthieu Lacolle, and Aasmund S. Sudbø
Opt. Express 18(16) 17201-17208 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.