Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 11,
  • pp. 1178-1183
  • (2007)

Near-Infrared Analysis of Ground Barley for Use as a Feedstock for Fuel Ethanol Production

Not Accessible

Your library or personal account may give you access

Abstract

The objective of this study was to explore the potential of near-infrared spectroscopy for determining the compositional quality properties of barley as a feedstock for fuel ethanol production and to compare the prediction accuracy between calibration models obtained using a Fourier transform near-infrared system (FT-NIR) and a dispersive near-infrared system. The total sample set contained 206 samples of three types of barley, hull-less, malt, and hulled varieties, which were grown at various locations in the eastern U.S. from 2002 to 2005 years. A new hull-less barley variety, Doyce, which was specially bred for potential use in ethanol production, was included in the sample set. One hundred and thirty-eight barley samples were used for calibration and sixty-eight were used for validation. Ground barley samples were scanned on both a FTNIR spectrometer (10 000 to 4000 cm<sup>−1</sup> at 4 cm<sup>−1</sup> resolution) and a dispersive NIR spectrometer (400 to 2498 nm at 10 nm resolution), respectively. Six grain components, moisture, starch, β-glucan, protein, oil, and ash content, were analyzed as parameters of barley quality. Principal component analysis showed that barley samples could be classified by their types: hull-less, malt, and hulled. Partial least squares regression indicated that both FT-NIR and dispersive NIR spectroscopy have the potential to determine quality properties of barley with an acceptable accuracy, except for β-glucan content. There was no predictive advantage in using a high-resolution FT-NIR instrument over a dispersive system for most components of barley.

PDF Article
More Like This
Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA

Jinming Liu, Nan Li, Feng Zhen, Yonghua Xu, Wenzhe Li, and Yong Sun
Appl. Opt. 58(18) 5090-5097 (2019)

Rapid determination of the main components of corn based on near-infrared spectroscopy and a BiPLS-PCA-ELM model

Lili Xu, Jinming Liu, Chunqi Wang, Zhijiang Li, and Dongjie Zhang
Appl. Opt. 62(11) 2756-2765 (2023)

Assessing frost damage in barley using terahertz imaging

Wendy S. L. Lee, Ariel Ferrante, Withawat Withayachumnankul, and Jason A. Able
Opt. Express 28(21) 30644-30655 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.