Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 8,
  • pp. 889-895
  • (2007)

Analysis of Composite Structure and Primordial Wood Remains in Petrified Wood

Not Accessible

Your library or personal account may give you access

Abstract

Among all the fossils, petrified wood belongs to the most impressive and most common of materials. Still, its study has not exceeded the purely phenomenological level. The recognition of the conserved structure of petrified wood seems to be of meaning for understanding the geological past, the complete carbon cycle inside the Earth, and the structure of potential new materials. The first ever published spatial distributions of the remains of the primordial organic material (lignin, cellulose, pectins) in the cells of permineralized wood, from Dunarobba (Central Italy), are presented here. They were collected using μ-Raman spectrometry. The composite nature of the petrified material (calcite located in the lumena of cells and goethite located in the cell walls) was confirmed by electron, proton, and X-ray microprobes. The structure of the cell walls was well preserved. The mineralization process was induced by the tracheidal water flow and was stopped after formation of pipe-like goethite shielding of the cell walls on the cellulose scaffolds. The chemical (Eh and pH ranges) and probable microbial conditions for such a pattern of mineralization were determined. We estimate that substantial amounts of the primordial organic matter were preserved in bodies of petrified wood on a global scale. The wood petrifaction process, if well understood, can be a basis for the production of "everlasting" organic–inorganic composite compounds.

PDF Article
More Like This
Terahertz optical material based on wood-plastic composites

Atsushi Nakanishi and Hironori Takahashi
Opt. Mater. Express 8(12) 3653-3658 (2018)

In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy

Gaël Latour, Jean-Philippe Echard, Marie Didier, and Marie-Claire Schanne-Klein
Opt. Express 20(22) 24623-24635 (2012)

Terahertz optical properties of wood–plastic composites

Atsushi Nakanishi and Hiroshi Satozono
Appl. Opt. 59(4) 904-909 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.