Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 65,
  • Issue 6,
  • pp. 604-610
  • (2011)

Self-Aggregation Processes of 1,6-Diphenyl-1,3,5-Hexatriene in Water/Ethanol Mixtures with High Water Percentages

Not Accessible

Your library or personal account may give you access

Abstract

This work describes the behavior of 1,6-diphenyl-1,3,5-hexatriene (DPH) in ethanol/water mixtures. The dependence of DPH photophysical properties (absorption and fluorescence emission) on the water percentage in ethanol indicates that DPH undergoes self-aggregation processes in solvent conditions above a critical water content. Evidence such as an additional absorption band, Beer's law deviation, kinetic behavior, and other experimental results obtained from temperature variation and surfactant addition demonstrated the presence of several types of DPH aggregates. Resonance light scattering measurements proved that the aggregate grew in water-rich media by a self-catalyzed process.

PDF Article
More Like This
High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

Alok K. Ray, Sucharita Sinha, Soumitra Kundu, Sasi Kumar, Sivagiriyal Karunakaran Sreenivasan Nair, Tamal Pal, and Kamalesh Dasgupta
Appl. Opt. 41(9) 1704-1713 (2002)

Molecular dynamic investigation of ethanol-water mixture by terahertz-induced Kerr effect

Hang Zhao, Yong Tan, Rui Zhang, Yuejin Zhao, Cunlin Zhang, Xi-Cheng Zhang, and Liangliang Zhang
Opt. Express 29(22) 36379-36388 (2021)

Characterization of fuel/water mixtures and emulsions with ethanol using laser-induced fluorescence

Matthias Koegl, Christopher Mull, Yogeshwar Nath Mishra, Stefan Will, and Lars Zigan
Appl. Opt. 59(4) 1136-1144 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.