Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 68,
  • Issue 4,
  • pp. 458-465
  • (2014)

Derivatization Technique to Increase the Spectral Selectivity of Two-Dimensional Fourier Transform Infrared Focal Plane Array Imaging: Analysis of Binder Composition in Aged Oil and Tempera Paint

Not Accessible

Your library or personal account may give you access

Abstract

The interpretation of standard Fourier transform infrared spectra (FT-IR) on oil-based paint samples often suffers from interfering bands of the different compounds, namely, binder, oxidative aging products, carboxylates formed during aging, and several pigments and fillers. The distinction of the aging products such as ketone and carboxylic acid functional groups pose the next problem, as these interfere with the triglyceride esters of the oil. A sample preparation and derivatization technique using gaseous sulfur tetrafluoride (SF<sub>4</sub>), was thus developed with the aim to discriminate overlapping signals and achieve a signal enhancement on superposed compounds. Of particular interest in this context is the signal elimination of the broad carboxylate bands of the typical reaction products developing during the aging processes in oil-based paints, as well as signal interference originating from several typical pigments in this spectral range. Furthermore, it is possible to distinguish the different carbonyl-containing functional groups upon selective alteration. The derivatization treatment can be applied to both microsamples and polished cross sections. It increases the selectivity of the infrared spectroscopy technique in a fundamental manner and permits the identification and two-dimensional (2D) localization of binder components in aged paint samples at the micrometer scale. The combination of SF<sub>4</sub> derivatization with high-resolution 2D FT-IR focal plane array (FPA) imaging delivers considerable advances to the study of micro-morphological processes involving organic compounds.

PDF Article
More Like This
Angular acceptance analysis of an infrared focal plane array with a built-in stationary Fourier transform spectrometer

Frédéric Gillard, Yann Ferrec, Nicolas Guérineau, Sylvain Rommeluère, Jean Taboury, and Pierre Chavel
J. Opt. Soc. Am. A 29(6) 936-944 (2012)

Single-scan extraction of two-dimensional parameters of infrared focal plane arrays utilizing a Fourier-transform spectrometer

S. Rommeluère, R. Haïdar, N. Guérineau, J. Deschamps, E. De Borniol, A. Million, J. P. Chamonal, and G. Destefanis
Appl. Opt. 46(9) 1379-1384 (2007)

Mercury cadmium telluride focal-plane array detection for mid-infrared Fourier-transform spectroscopic imaging

L. H. Kidder, I. W. Levin, E. Neil Lewis, V. D. Kleiman, and E. J. Heilweil
Opt. Lett. 22(10) 742-744 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.