Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 69,
  • Issue 2,
  • pp. 257-268
  • (2015)

Development and Metrological Characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) Spectrometer for Simultaneous Absolute Measurement of Carbon Dioxide and Water Vapor

Not Accessible

Your library or personal account may give you access

Abstract

Simultaneous detection of two analytes, carbon dioxide (CO2) and water vapor (H2O), has been realized using tunable diode laser absorption spectroscopy (TDLAS) with a single distributed feedback diode laser at 2.7 μm. The dynamic range of the spectrometer is extended from the low parts per million to the percentage range using two gas cells, a single-pass cell with 0.77 m, and a Herriott-type multipass cell with 76 m path length. Absolute measurements were carried out, i.e., amount fractions of the analytes were calculated based on previously determined spectral line parameters, without the need for an instrument calibration using gas standards. A thorough metrological characterization of the spectrometer is presented. We discuss traceability of all parameters used for amount fraction determination and provide a comprehensive uncertainty assessment. Relative expanded uncertainties (k = 2, 95% confidence level) of the measured amount fractions are shown to be in the 2-3% range for both analytes. Minimum detectable amount fractions are 0.16 μmol/mol for CO2 and 1.1 μmol/mol for H2O for 76 m path length and 5 s averaging time. This corresponds to normalized detection limits of 27 μmol/mol m Hz−1/2 for CO2 and 221 μmol/mol m Hz−1/2 for H2O. Precision of the spectrometer, determined using Allan variance analysis, is 3.3 nmol/mol for CO2 and 21 nmol/mol for H2O. The spectrometer has been validated using reference gas mixtures with known CO2 and H2O amount fractions. An application example of the absolute TDLAS spectrometer as a reference instrument to validate other sensors is also presented.

PDF Article
More Like This
Interband cascade laser-based optical transfer standard for atmospheric carbon monoxide measurements

Javis A. Nwaboh, Zhechao Qu, Olav Werhahn, and Volker Ebert
Appl. Opt. 56(11) E84-E93 (2017)

High-precision ethanol measurement by mid-IR laser absorption spectroscopy for metrological applications

Oleg Aseev, Béla Tuzson, Herbert Looser, Philipp Scheidegger, Chang Liu, Carina Morstein, Bernhard Niederhauser, and Lukas Emmenegger
Opt. Express 27(4) 5314-5325 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.