Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 2,
  • pp. 279-287
  • (2017)

Improving Sensitivity and Reproducibility of SERS Sensing in Microenvironments Using Individual, Optically Trapped Surface-Enhanced Raman Spectroscopy(SERS) Probes

Not Accessible

Your library or personal account may give you access

Abstract

Surface-enhanced Raman spectroscopy (SERS) sensors offer many advantages for chemical analyses, including the ability to provide chemical specific information and multiplexed detection capability at specific locations. However, to have operative SERS sensors for probing microenvironments, probes with high signal enhancement and reproducibility are necessary. To this end, dynamic enhancement of SERS (i.e., in-situ amplification of signal-to-noise and signal-to-background ratios) from individual probes has been explored. In this paper, we characterize the use of optical tweezers to amplify SERS signals as well as suppress background signals via trapping of individual SERS active probes. This amplification is achieved through a steady presence of a single “hot” particle in the focus of the excitation laser. In addition to increases in signal and concomitant decreases in non-SERS backgrounds, optical trapping results in an eightfold increase in the stability of the signal as well. This enhancement strategy was demonstrated using both single and multilayered SERS sub-micron probes, producing combined signal enhancements of 24-fold (beyond the native 106 SERS enhancement) for a three-layered geometry. The ability to dynamically control the enhancement offers the possibility to develop SERS-based sensors and probes with tailored sensitivities. In addition, since this trapping enhancement can be used to observe individual probes with low laser fluences, it could offer particular interest in probing the composition of microenvironments not amenable to tip-enhanced Raman spectroscopy or other scanning probe methods (e.g., intracellular analyses, etc.).

© 2016 The Author(s)

PDF Article
More Like This
A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles

Lingbo Kong, Changwon Lee, Christopher M. Earhart, Bernardo Cordovez, and James W. Chan
Opt. Express 23(5) 6793-6802 (2015)

Micro-lensed optical fibers for a surface-enhanced Raman scattering sensing probe

Karolina Milenko, Silje S. Fuglerud, Snorre B. Kjeldby, Reinold Ellingsen, Astrid Aksnes, and Dag R. Hjelme
Opt. Lett. 43(24) 6029-6032 (2018)

Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)

Ashwin Gopinath, Svetlana V. Boriskina, Bjorn M. Reinhard, and Luca Dal Negro
Opt. Express 17(5) 3741-3753 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved