Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 6,
  • pp. 1148-1156
  • (2017)

Does Nonlinear Modeling Play a Role in Plasmid Bioprocess Monitoring Using Fourier Transform Infrared Spectra?

Not Accessible

Your library or personal account may give you access

Abstract

The monitoring of biopharmaceutical products using Fourier transform infrared (FT-IR) spectroscopy relies on calibration techniques involving the acquisition of spectra of bioprocess samples along the process. The most commonly used method for that purpose is partial least squares (PLS) regression, under the assumption that a linear model is valid. Despite being successful in the presence of small nonlinearities, linear methods may fail in the presence of strong nonlinearities. This paper studies the potential usefulness of nonlinear regression methods for predicting, from in situ near-infrared (NIR) and mid-infrared (MIR) spectra acquired in high-throughput mode, biomass and plasmid concentrations in Escherichia coli DH5-α cultures producing the plasmid model pVAX-LacZ. The linear methods PLS and ridge regression (RR) are compared with their kernel (nonlinear) versions, kPLS and kRR, as well as with the (also nonlinear) relevance vector machine (RVM) and Gaussian process regression (GPR). For the systems studied, RR provided better predictive performances compared to the remaining methods. Moreover, the results point to further investigation based on larger data sets whenever differences in predictive accuracy between a linear method and its kernelized version could not be found. The use of nonlinear methods, however, shall be judged regarding the additional computational cost required to tune their additional parameters, especially when the less computationally demanding linear methods herein studied are able to successfully monitor the variables under study.

© 2017 The Author(s)

PDF Article
More Like This
Analysis of far-infrared emission Fourier transform spectra

Jae H. Park and Bruno Carli
Appl. Opt. 25(19) 3490-3501 (1986)

Nonlinear interferometer for Fourier-transform mid-infrared gas spectroscopy using near-infrared detection

Chiara Lindner, Jachin Kunz, Simon J. Herr, Sebastian Wolf, Jens Kießling, and Frank Kühnemann
Opt. Express 29(3) 4035-4047 (2021)

Automatic baseline correction method for the open-path Fourier transform infrared spectra by using simple iterative averaging

Xianchun Shen, Liang Xu, Shubin Ye, Rong Hu, Ling Jin, Hanyang Xu, and Wenqing Liu
Opt. Express 26(10) A609-A614 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.