Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

InAs/GaAs quantum dot laterally coupled distributed feedback lasers at 1.3 μm

Not Accessible

Your library or personal account may give you access

Abstract

We report the InAs/GaAs quantum dot laterally coupled distributed feedback (LC-DFB) lasers operating at room temperature in the wavelength range of 1.31 µm. First-order chromium Bragg gratings were fabricated alongside the ridge waveguide to obtain the maximum coupling coefficient with the optical field. Stable continuous-wave single-frequency operation has been achieved with output power above 5 mW/facet and side mode suppression ratio exceeding 52 dB. Moreover, a single chip integrating three LC-DFB lasers was tentatively explored. The three LC-DFB lasers on the chip can operate in single mode at room temperature, covering the wavelength span of 35.6 nm.

© 2023 Chinese Laser Press

PDF Article
More Like This
High-performance distributed feedback quantum dot lasers with laterally coupled dielectric gratings

Zhuohui Yang, Zhengqing Ding, Lin Liu, Hancheng Zhong, Sheng Cao, Xinzhong Zhang, Shizhe Lin, Xiaoying Huang, Huadi Deng, Ying Yu, and Siyuan Yu
Photon. Res. 10(5) 1271-1279 (2022)

Laterally coupled distributed feedback type-I quantum well cascade diode lasers emitting near 3.22  μm

Tao Feng, Takashi Hosoda, Leon Shterengas, Gela Kipshidze, Aaron Stein, Ming Lu, and Gregory Belenky
Appl. Opt. 56(31) H74-H80 (2017)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates

Ting Wang, Huiyun Liu, Andrew Lee, Francesca Pozzi, and Alwyn Seeds
Opt. Express 19(12) 11381-11386 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved