Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 21,
  • Issue 2,
  • pp. 021602-
  • (2023)

Nonlinear ionization control by temporally shaped fs+ps double-pulse sequence on ZnO

Not Accessible

Your library or personal account may give you access

Abstract

We designed a femtosecond (fs) + picosecond (ps) double-pulse sequence by using a Mach–Zehnder-like apparatus to split a single 120 fs pulse into two sub-pulses, and one of them was stretched to a width of 2 ps by a four-pass grating system. Through observing the ripples induced on the ZnO surface, we found the ionization rate appeared to be higher for the sequence in which the fs pulse arrived first. The electron rate equation was used to calculate changes of electron density distribution for the sequences with different delay times. We suggest that using a temporally shaped fs+ps pulse sequence can achieve nonlinear ionization control and influence the induced ripples.

© 2022 Chinese Laser Press

PDF Article
More Like This
Controllable formation of laser-induced periodic surface structures on ZnO film by temporally shaped femtosecond laser scanning

Shaojun Wang, Lan Jiang, Weina Han, Wei Liu, Jie Hu, Suocheng Wang, and Yongfeng Lu
Opt. Lett. 45(8) 2411-2414 (2020)

Controlling ripples’ periodicity using temporally delayed femtosecond laser double pulses

M. Barberoglou, D. Gray, E. Magoulakis, C. Fotakis, P. A. Loukakos, and E. Stratakis
Opt. Express 21(15) 18501-18508 (2013)

Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains

Lan Jiang, Xuesong Shi, Xin Li, Yanping Yuan, Cong Wang, and Yongfeng Lu
Opt. Express 20(19) 21505-21511 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.