Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Network Architecture in the Era of Integrated Optics

Not Accessible

Your library or personal account may give you access

Abstract

The reach of electric transmission lines has been shrinking with the increase of per-lane signaling rates, causing the proportion of ports that need to be optical to increase substantially. At the same time, the cost of switch ports has dropped faster than the cost of optics has, leading to a situation where the cost of the data center’s network is no longer dominated by the switches but instead by the optics. We propose high-level models expressing total network cost per billions of bits per second (Gbps) per endpoint, capturing the essential cost/performance trade-offs between switch ports and optics that drives the decision of choosing one architecture over another. Given the switch radix and the target network scale, our model yields the lowest-cost Folded Clos topology for given values of the relative cost between electrical switch ports and optical ports. We also consider the potential impact of employing integrated, co-packaged optics, which opens a new space of architectural choices with the potential for significant cost and energy savings. Our analysis reveals that the conventional wisdom that “a larger switch radix is always better” does not always hold true; in some scenarios, smaller-radix devices can achieve the same scale while enabling lower cost and lower power per port. Moreover, we find that integrated optics enables a repartitioning of functionality that gives rise to a new class of switch architecture that minimizes total per-endpoint network cost.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Reimagining Datacenter Topologies With Integrated Silicon Photonics

Cyriel Minkenberg, Nathan Farrington, Aaron Zilkie, David Nelson, Caroline P. Lai, Dan Brunina, Jerry Byrd, Bhaskar Chowdhuri, Nick Kucharewski, Karl Muth, Amit Nagra, German Rodriguez, David Rubi, Thomas Schrans, Pradeep Srinivasan, Yeong Wang, Chiang Yeh, and Andrew Rickman
J. Opt. Commun. Netw. 10(7) B126-B139 (2018)

HiFOST: A Scalable and Low-Latency Hybrid Data Center Network Architecture Based on Flow-Controlled Fast Optical Switches

Fulong Yan, Xuwei Xue, and Nicola Calabretta
J. Opt. Commun. Netw. 10(7) B1-B14 (2018)

OPSquare: A Flat DCN Architecture Based on Flow-Controlled Optical Packet Switches

Fulong Yan, Wang Miao, Oded Raz, and Nicola Calabretta
J. Opt. Commun. Netw. 9(4) 291-303 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved