Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Evaluation of probabilistic constellation shaping performance in Flex Grid over multicore fiber dynamic optical backbone networks [Invited]

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we present a worst-case methodology for estimating the attainable spectral efficiency over end-to-end paths across a Flex Grid over multicore fiber (MCF) optical network. This methodology accounts for physical link noise, as well as for the signal-to-noise ratio in the Add module (${{\rm{SNR}}_{{\rm{TX}}}}$) of spatial-division-multiplexing-enabled reconfigurable optical add and drop multiplexers (SDM-ROADMs), introducing a dominant noise contribution over that of their Bypass and Drop modules. The proposed methodology is subsequently used to quantify the benefits that probabilistic constellation shaping (PCS) can bring to Flex-Grid/MCF dynamic optical backbone networks, compared to using traditional polarization-multiplexed modulation formats. In a first step, insight is provided into the spectral efficiency attainable along the precomputed end-to-end paths in two reference backbone networks, either using PCS or traditional modulation formats. Moreover, in each one of these networks, two ${{\rm{SNR}}_{{\rm{TX}}}}$ values are identified: the ${{\rm{SNR}}_{{\rm{TX}}}}$ yielding the maximum average paths’ spectral efficiency, as well as an ${{\rm{SNR}}_{{\rm{TX}}}}$ that, although slightly degrading the average paths’ spectral efficiency (by 10%), would yet enable a cost-effective SDM-ROADM Add module implementation. Extensive simulations are conducted to analyze PCS offered load gains under 1% bandwidth blocking probability. Furthermore, the study lastly focuses on finding out whether lower fragmentation levels in Flex-Grid/MCF dynamic optical backbone networks can push PCS benefits even further.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Flex-Grid/SDM Backbone Network Design with Inter-Core XT-Limited Transmission Reach

Jordi Perelló, Joan M. Gené, Albert Pagès, Jose A. Lazaro, and Salvatore Spadaro
J. Opt. Commun. Netw. 8(8) 540-552 (2016)

Evaluation of Core-Continuity-Constrained ROADMs for Flex-Grid/MCF Optical Networks

F.-J. Moreno-Muro, R. Rumipamba-Zambrano, P. Pavón-Marino, J. Perelló, J. M. Gené, and S. Spadaro
J. Opt. Commun. Netw. 9(11) 1041-1050 (2017)

Evaluating Internal Blocking in Noncontentionless Flex-grid ROADMs [Invited]

Pablo Pavon-Marino, Maria-Victoria Bueno-Delgado, and Jose-Luis Izquierdo-Zaragoza
J. Opt. Commun. Netw. 7(3) A474-A481 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.