Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Human linear template with mammographic backgrounds estimated with a genetic algorithm

Not Accessible

Your library or personal account may give you access

Abstract

We estimated human observer linear templates underlying the detection of a realistic, spherical mass signal with mammographic backgrounds. Five trained naïve observers participated in two-alternative forced-choice (2-AFC) detection experiments with the signal superimposed on synthetic, clustered lumpy backgrounds (CLBs) in one condition and on nonstationary real mammographic backgrounds in another. Human observer linear templates were estimated using a genetic algorithm. A variety of common model observer templates were computed, and their shapes and associated performances were compared with those of the human observer. The estimated linear templates are not significantly different for stationary CLBs and real mammographic backgrounds. The estimated performance of the linear template compared with that of the human observers is within 5% in terms of percent correct (Pc) for the 2-AFC task. Channelized Hotelling models can fit human performance, but the templates differ considerably from the human linear template. Due to different local statistics, detection efficiency is significantly higher on nonstationary real backgrounds than on globally stationary synthetic CLBs. This finding emphasizes that nonstationary backgrounds need to be described by their local statistics.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Mass detection on mammograms: influence of signal shape uncertainty on human and model observers

C. Castella, M. P. Eckstein, C. K. Abbey, K. Kinkel, F. R. Verdun, R. S. Saunders, E. Samei, and F. O. Bochud
J. Opt. Soc. Am. A 26(2) 425-436 (2009)

Mammographic texture synthesis: second-generation clustered lumpy backgrounds using a genetic algorithm

Cyril Castella, Karen Kinkel, François Descombes, Miguel P. Eckstein, Pierre-Edouard Sottas, Francis R. Verdun, and François O. Bochud
Opt. Express 16(11) 7595-7607 (2008)

Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds

François O. Bochud, Craig K. Abbey, and Miguel P. Eckstein
J. Opt. Soc. Am. A 17(2) 193-205 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved