Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

The relationship between optimal and biologically plausible decoding of stimulus velocity in the retina

Not Accessible

Your library or personal account may give you access

Abstract

A major open problem in systems neuroscience is to understand the relationship between behavior and the detailed spiking properties of neural populations. We assess how faithfully velocity information can be decoded from a population of spiking model retinal neurons whose spatiotemporal receptive fields and ensemble spike train dynamics are closely matched to real data. We describe how to compute the optimal Bayesian estimate of image velocity given the population spike train response and show that, in the case of global translation of an image with known intensity profile, on average the spike train ensemble signals speed with a fractional standard deviation of about 2% across a specific set of stimulus conditions. We further show how to compute the Bayesian velocity estimate in the case where we only have some a priori information about the (naturalistic) spatial correlation structure of the image but do not know the image explicitly. As expected, the performance of the Bayesian decoder is shown to be less accurate with decreasing prior image information. There turns out to be a close mathematical connection between a biologically plausible “motion energy” method for decoding the velocity and the Bayesian decoder in the case that the image is not known. Simulations using the motion energy method and the Bayesian decoder with unknown image reveal that they result in fractional standard deviations of 10% and 6%, respectively, across the same set of stimulus conditions. Estimation performance is rather insensitive to the details of the precise receptive field location, correlated activity between cells, and spike timing.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Filter selection model for motion segmentation and velocity integration

Steven J. Nowlan and Terrence J. Sejnowski
J. Opt. Soc. Am. A 11(12) 3177-3200 (1994)

Spatiotemporal receptive fields of cells in V1 are optimally shaped for stimulus velocity estimation

Giacomo Cocci, Davide Barbieri, and Alessandro Sarti
J. Opt. Soc. Am. A 29(1) 130-138 (2012)

Local computation of angular velocity in rotational visual motion

José F. Barraza and Norberto M. Grzywacz
J. Opt. Soc. Am. A 20(7) 1382-1390 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (50)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved