Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High-resolution 3D phase imaging using a partitioned detection aperture: a wave-optic analysis

Not Accessible

Your library or personal account may give you access

Abstract

Quantitative phase imaging has become a topic of considerable interest in the microscopy community. We have recently described one such technique based on the use of a partitioned detection aperture, which can be operated in a single shot with an extended source [Opt. Lett. 37, 4062 (2012) [CrossRef]  ]. We follow up on this work by providing a rigorous theory of our technique using paraxial wave optics, where we derive fully 3D spread functions for both phase and intensity. Using these functions, we discuss methods of phase reconstruction for in- and out-of-focus samples, insensitive to weak attenuations of light. Our approach provides a strategy for detection-limited lateral resolution with an extended depth of field and is applicable to imaging smooth and rough samples.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT)

Jeffrey J. Field, David G. Winters, and Randy A. Bartels
J. Opt. Soc. Am. A 32(11) 2156-2168 (2015)

Fourier optics analysis of phase-mask-based path-length-multiplexed optical coherence tomography

Biwei Yin, Jordan Dwelle, Bingqing Wang, Tianyi Wang, Marc D. Feldman, Henry G. Rylander, and Thomas E. Milner
J. Opt. Soc. Am. A 32(11) 2169-2177 (2015)

Quantitative phase microscopy via optimized inversion of the phase optical transfer function

Micah H. Jenkins and Thomas K. Gaylord
Appl. Opt. 54(28) 8566-8579 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (70)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.