Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Arterial pulsation modulates the optical attenuation coefficient of skin

Not Accessible

Your library or personal account may give you access

Abstract

Photoplethysmographic (PPG) signals arise from the modulation of light reflectivity on the skin due to changes of physiological origin. Imaging plethysmography (iPPG) is a video-based PPG method that can remotely monitor vital signs in a non-invasive manner. iPPG signals result from skin reflectivity modulation. The origin of such reflectivity modulation is still a subject of debate. Here, we have used optical coherence tomography (OCT) imaging to find whether iPPG signals may result from skin optical properties being directly or indirectly modulated by arterial transmural pressure propagation. The light intensity across the tissue was modeled through a simple exponential decay (Beer–Lambert law) to analyze in vivo the modulation of the optical attenuation coefficient of the skin by arterial pulsation. The OCT transversal images were acquired from a forearm of three subjects in a pilot study. The results show that the optical attenuation coefficient of skin changes at the same frequency as the arterial pulsation due to transmural pressure propagation (local ballistographic effect), but we cannot discard the contribution of global ballistographic effects.

© 2023 Optica Publishing Group

Full Article  |  PDF Article

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.