Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers

Not Accessible

Your library or personal account may give you access

Abstract

Third-order Kerr nonlinearities and Raman gain are studied experimentally in high-purity As2Se3 optical fibers for wavelengths near 1.55 µm. Kerr nonlinear coefficients are measured to be nearly 1000 times higher than those for silica fibers. In pulsed mode, nonlinear phase shifts near 1.2-π rad are measured in fibers only 85 cm long with peak pulse powers near 3 W. However, there are nonlinear losses near 20% for nonlinear phase shifts near π. By use of a cw optical pump, large Raman gains nearly 800 times that of silica were measured. In the cw case there were losses in the form of index gratings formed from standing waves at the exit face of the fiber. Discrete Raman amplifiers and optical regenerators are discussed as possible applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.