Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Filamentation of long-wave infrared pulses in the atmosphere [Invited]

Abstract

Filamentation of a high-power laser beam in air opens the possibility of the diffraction-compensated propagation of a laser beam over long distances and as such is being considered for remote stand-off detection, lightning control, free-space communications, and long-range projection of high-energy pulses. Switching to long-wave infrared (LWIR) range for filamentation, as shown in recent experiments, allows for generation of a single centimeter-diameter channel in air that, in comparison with a short-wavelength laser filament, has 4 orders of magnitude larger cross section and guides many joules of pulse energy over multiple Rayleigh distances at a clamped intensity of $\sim\!{{10}^{12}}\,\,{\rm{W}}/{{\rm{cm}}^2}$. Self-guiding of LWIR pulses in air arises from the balance between self-focusing, diffraction, and defocusing caused by free carriers generated via many-body Coulomb-induced ionization which effectively decrease the molecular polarizability during the long-wavelength laser pulse. Understanding where this new ionization regime plays a role, below the threshold of the well-adopted single-atom tunnel ionization in gases, could become a new frontier in strong-field interactions. This paper offers an overview of the atmospheric filamentation research at long-wave infrared wavelengths.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Self-channeling of a multi-Joule 10 µm picosecond pulse train through long distances in air

S. Ya. Tochitsky, E. C. Welch, D. A. Matteo, P. Panagiotopoulos, M. Kolesik, J. V. Moloney, and C. Joshi
Opt. Express 32(2) 2067-2080 (2024)

Control of the filament dynamics of 10 µm pulses via designer pulse trains

Paris Panagiotopoulos, Miroslav Kolesik, Stephan W. Koch, Ewan M. Wright, Sergei Tochitsky, and Jerome V. Moloney
J. Opt. Soc. Am. B 36(10) G33-G39 (2019)

Range of multiple filamentation of a terawatt-power large-aperture KrF laser beam in atmospheric air

Vladimir Zvorykin, Andrey Ionin, Daria Mokrousova, Leonid Seleznev, Igor’ Smetanin, Elena Sunchugasheva, Nikolai Ustinovskii, and Alexey Shutov
J. Opt. Soc. Am. B 36(10) G25-G32 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved