Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical rectification of ultrafast Yb lasers: pushing power and bandwidth of terahertz generation in GaP

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate broadband high-power terahertz (THz) generation at megahertz repetition rates by optical rectification in GaP driven by an ultrafast Yb-based thin-disk laser (TDL) oscillator. We investigate the influence of pulse duration in the range of 50–220 fs and thickness of the GaP crystal on the THz generation. Optimization of these parameters with respect to the broadest spectral bandwidth yields a gap-less THz spectrum extending to nearly 7 THz. We further tailor the driving laser and the THz generation parameters for the highest average power, demonstrating 0.3 mW THz radiation with a spectrum extending to 5 THz. This was achieved using a 0.5 mm thick GaP crystal pumped with a 95 fs, 20 W TDL, operating at 48 MHz repetition rate. We also provide a simple method to estimate the THz spectrum, which can be used for design and optimization of similar THz systems.

© 2019 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.