Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Backscattering enhancement, vanishing extinction, and morphological effects of active scatterers

Not Accessible

Your library or personal account may give you access

Abstract

Using analytical Lorenz–Mie scattering formalism and numerical methods, we analyze the response of active particles to electromagnetic waves. The particles are composed of homogeneous, non-magnetic, and dielectrically isotropic medium. Spherical scatterers and sharp and rounded cubes are treated. The absorption cross section of active particles is negative, thus showing gain in their electromagnetic response. Since the scattering cross section is always positive, their extinction can be either positive, negative, or zero. We construct a five-class categorization of active and passive dielectric particles. We point out the enhanced backscattering phenomenon that active scatterers display and also discuss extinction paradox and optical theorem. Finally, using COMSOL Multiphysics and an in-house method-of-moments code, the effects of the non-sphericity of active scatterers on their electromagnetic response are illustrated.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Huge light scattering from active anisotropic spherical particles

Xiaofeng Fan, Zexiang Shen, and Boris Luk’yanchuk
Opt. Express 18(24) 24868-24880 (2010)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (21)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.