Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Compressive fluorescence imaging using a multi-core fiber and spatially dependent scattering

Abstract

We demonstrate imaging using a multi-core fiber with a scattering distal tip and compressed sensing signal acquisition. We illuminate objects with randomly structured speckle patterns generated by a coherent light source separately coupled through each fiber core to a ground glass diffuser at the distal end. Using the characterized speckle patterns and the total light collected from the object, we computationally recover pixelation-free object images with up to a seven times higher space-bandwidth product than the number of cores. The proposed imaging system is insensitive to bending of the fiber and extremely compact, making it suitable for minimally invasive endomicroscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Single-pixel imaging using compressed sensing and wavelength-dependent scattering

Jaewook Shin, Bryan T. Bosworth, and Mark A. Foster
Opt. Lett. 41(5) 886-889 (2016)

Calibration-free imaging through a multicore fiber using speckle scanning microscopy

Nicolino Stasio, Christophe Moser, and Demetri Psaltis
Opt. Lett. 41(13) 3078-3081 (2016)

Widefield lensless imaging through a fiber bundle via speckle correlations

Amir Porat, Esben Ravn Andresen, Hervé Rigneault, Dan Oron, Sylvain Gigan, and Ori Katz
Opt. Express 24(15) 16835-16855 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.