Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fabrication of silicon-tipped fiber-optic temperature sensors using aerogel-assisted glass soldering with precise laser heating

Abstract

We demonstrate the fabrication of fiber-optic Fabry–Perot interferometer (FPI) temperature sensors by bonding a small silicon diaphragm to the tip of an optical fiber using low melting point glass powders heated by a 980 nm laser on an aerogel substrate. The heating laser is delivered to the silicon FPI using an optical fiber, while the silicon temperature is being monitored using a 1550 nm white-light system, providing localized heating with precise temperature control. The use of an aerogel substrate greatly improves the heating efficiency by reducing the thermal loss of the bonding parts to the ambient environment. A desirable temperature for bonding can be achieved with relatively small heating laser power. The bonding process is carried out in an open space at room temperature for convenient optical alignment. The precise temperature control ensures minimum perturbation to the optical alignment and no induced thermal damage to the optical parts during the bonding process. For demonstration, we fabricated a low-finesse and high-finesse silicon FPI sensor and characterized their measurement resolution and temperature capability. The results show that the fabrication method has a good potential for high-precision fabrication of fiber-optic sensors.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C

Guigen Liu, Qiwen Sheng, Dustin Dam, Jiong Hua, Weilin Hou, and Ming Han
Opt. Lett. 42(7) 1412-1415 (2017)

Optical fiber vector flow sensor based on a silicon Fabry–Perot interferometer array

Guigen Liu, Qiwen Sheng, Weilin Hou, and Ming Han
Opt. Lett. 41(20) 4629-4632 (2016)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.