Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser Writing: feature introduction

Open Access Open Access

Abstract

An introduction is provided to the feature issue of Optical Materials Express on laser materials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

For a wide range of applications extending from photonics and metamaterials to lab-on-a-chip and tissue engineering, the construction of freeform two- and three-dimensional devices and structures with high resolution has grown more and more imperatively. To this end, lasers have proved to be an indispensable tool, as they can be focused and directed very accurately using conventional optics for flexible direct writing, and they can achieve sub-100 nm resolution, circumventing the diffraction limit by employing multi-photon processes.

The 23 papers published in this special issue cover the latest advances in the freeform fabrication of high-resolution, 2D and 3D structures using lasers, which include

  • • Direct writing of optical components [1,2], waveguides [3,4], sensor [5], and complex nanostructures [6,7]
  • • Advances in laser-induced forward transfer (LIFT) [812]
  • • Multiphoton lithography [13, 14] including materials characterization [15,16]
  • • Thermochemical high-resolution writing [17] and direct Laser micro-sintering [18]
  • • Direct laser ablation [19] and periodic structure creation [2022]
in addition to an invited review paper on two-color multiphoton Lithography [23]

References

1. F. Glöckler, D. Müller, F. Erb, K.-E. Gottschalk, and A. Kienle, “Custom-made optical scatterers produced by 3D direct laser writing,” Opt. Mater. Express 9(5), 2327–2339 (2019). [CrossRef]  

2. K. Lammers, M. Ehrhardt, T. Malendevych, X. Xu, C. Vetter, A. Alberucci, A. Szameit, and S. Nolte, “Embedded nanograting-based waveplates for polarization control in integrated photonic circuits,” Opt. Mater. Express 9(6), 2560–2572 (2019). [CrossRef]  

3. G. Martinez-Jimenez, Y. Franz, A. F. J. Runge, M. Ceschia, N. Healy, S. Z. Oo, A. Tarazona, H. M. H. Chong, A. C. Peacock, and S. Mailis, “Photonic micro-structures produced by selective etching of laser-crystallized amorphous silicon,” Opt. Mater. Express 9(6), 2573–2581 (2019). [CrossRef]  

4. H. Hanafi, S. Kroesen, G. Lewes-Malandrakis, C. Nebel, W. H. P. Pernice, and C. Denz, “Polycrystalline diamond photonic waveguides realized by femtosecond laser lithography,” Opt. Mater. Express 9(7), 3109–3114 (2019). [CrossRef]  

5. S. Hayashi, Y. Nakajima, and M. Terakawa, “Strain sensing using electrically conductive structures fabricated by femtosecond-laser-based modification of PDMS,” Opt. Mater. Express 9(6), 2672–2680 (2019). [CrossRef]  

6. Q. Zhang, M. Li, Y. Chen, X. Ren, R. Osellame, Q. Gong, and Y. Li, “Femtosecond laser direct writing of an integrated path-encoded CNOT quantum gate,” Opt. Mater. Express 9(5), 2318–2326 (2019). [CrossRef]  

7. H. Xie, R. S. Joshya, J. Yang, and C. Guo, “Controllable fabrication of polygonal micro and nanostructures on sapphire surfaces by chemical etching after femtosecond laser irradiation,” Opt. Mater. Express 9(7), 2994–3005 (2019). [CrossRef]  

8. Q. Li, D. Grojo, A.-P. Alloncle, and P. Delaporte, “Jetting regimes of double-pulse laser-induced forward transfer,” Opt. Mater. Express 9(8), 3476–3486 (2019). [CrossRef]  

9. A. Narazaki, A. Oyane, S. Komuro, R. Kurosaki, T. Kameyama, I. Sakamaki, H. Araki, and H. Miyaji, “Bioactive micropatterning of apatite immobilizing cell adhesion protein by laser-induced forward transfer with a shock absorber,” Opt. Mater. Express 9(7), 2807–2816 (2019). [CrossRef]  

10. S. Surdo, A. Diaspro, and M. Duocastella, “Geometry-controllable micro-optics with laser catapulting,” Opt. Mater. Express 9(7), 2892–2901 (2019). [CrossRef]  

11. O. Koritsoglou, I. Theodorakos, F. Zacharatos, M. Makrygianni, D. Kariyapperuma, R. Price, B. Cobb, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Copper micro-electrode fabrication using laser printing and laser sintering processes for on-chip antennas on flexible integrated circuits,” Opt. Mater. Express 9(7), 3046–3058 (2019). [CrossRef]  

12. E. Turkoz, A. Perazzo, L. Deike, H. A. Stone, and C. B. Arnold, “Deposition-on-contact regime and the effect of donor-acceptor distance during laser-induced forward transfer of viscoelastic liquids,” Opt. Mater. Express 9(7), 2738–2747 (2019). [CrossRef]  

13. G. Zyla, A. Kovalev, S. Heisterkamp, C. Esen, E. L. Gurevich, S. Gorb, and A. Ostendorf, “Biomimetic structural coloration with tunable degree of angle-independence generated by two-photon polymerization,” Opt. Mater. Express 9(6), 2630–2639 (2019). [CrossRef]  

14. M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Long-scale multiphoton polymerization voxel growth investigation using engineered Bessel beams,” Opt. Mater. Express 9(7), 2838–2845 (2019). [CrossRef]  

15. T. Zandrini, N. Liaros, L. J. Jiang, Y. F. Lu, J. T. Fourkas, R. Osellame, and T. Baldacchini, “Effect of the resin viscosity on the writing properties of two-photon polymerization,” Opt. Mater. Express 9(6), 2601–2616 (2019). [CrossRef]  

16. W. Steiger, P. Gruber, D. Theiner, A. Dobos, M. Lunzer, J. Van Hoorick, S. Van Vlierberghe, R. Liska, and A. Ovsianikov, “Fully automated z-scan setup based on a tunable fs-oscillator,” Opt. Mater. Express 9(9), 3567–3581 (2019). [CrossRef]  

17. V. P. Veiko, R. A. Zakoldaev, E. A. Shakhno, D. A. Sinev, Z. K. Nguyen, A. V. Baranov, K. V. Bogdanov, M. Gedvilas, G. Račiukaitis, L. V. Vishnevskaya, and E. N. Degtyareva, “Thermochemical writing with high spatial resolution on Ti films utilising picosecond laser,” Opt. Mater. Express 9(6), 2729–2737 (2019). [CrossRef]  

18. M. Mizoshiri and Y. Kondo, “Direct writing of two- and three-dimensional Cu-based microstructures by femtosecond laser reductive sintering of the Cu2O nanospheres,” Opt. Mater. Express 9(7), 2828–2837 (2019). [CrossRef]  

19. E. J. Richman, Y.-T. Chou, Y. Deng, L. Kaelbling, Z. Liang, G. McAlaine, C. Miller, M. Selesnick, C. N. LaFratta, and P. Cadden-Zimansky, “Ultrafast laser ablation of graphene under water immersion,” Opt. Mater. Express 9(9), 3871–3877 (2019). [CrossRef]  

20. M. Akram, S. Bashir, S. A. Jalil, M. ElKabbash, F. Aumayr, A. Ajami, W. Husinsky, K. Mahmood, M. S. Rafique, and C. Guo, “Femtosecond laser induced periodic surface structures for the enhancement of field emission properties of tungsten,” Opt. Mater. Express 9(7), 3183–3192 (2019). [CrossRef]  

21. N. Charipar, R. C. Y. Auyeung, H. Kim, K. Charipar, and A. Piqué, “Hierarchical laser patterning of indium tin oxide thin films,” Opt. Mater. Express 9(7), 3035–3045 (2019). [CrossRef]  

22. Y. Tamamura and G. Miyaji, “Structural coloration of a stainless steel surface with homogeneous nanograting formed by femtosecond laser ablation,” Opt. Mater. Express 9(7), 2902–2909 (2019). [CrossRef]  

23. N. Liaros and J. T. Fourkas, “Ten years of two-color photolithography [Invited],” Opt. Mater. Express 9(7), 3006–3020 (2019). [CrossRef]  

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.