Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases

Not Accessible

Your library or personal account may give you access

Abstract

The design of a diode-laser sensor to monitor water vapor in high-pressure combustion gases is described. The sensor, which employs a multiple-fixed-wavelength absorption strategy, has the potential to simultaneously monitor the water mole fraction and the temperature and pressure in high-pressure and high-temperature environments. The conventional scanned-wavelength strategy, employed in previous diode-laser sensors, is shown to be ill-suited for high-pressure applications. The application of impact and additive approximations in the modeling of H2O absorption features at high pressures is validated experimentally for number densities as high as 18 amagats. Criteria to select optimum wavelength combinations for the fixed-wavelengths strategy are discussed. Optimum wavelength combinations that meet these criteria are identified for different temperature and pressure ranges of interest to combustion applications. The proposed sensor configuration and a strategy to obtain the baseline (zero absorption intensity) in high-pressure environments are also described. Line-shape models that are appropriate for different temperature and pressure regimes are identified.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Shock-tube study of high-pressure H2O spectroscopy

Venu Nagali, John T. Herbon, David C. Horning, David F. Davidson, and Ronald K. Hanson
Appl. Opt. 38(33) 6942-6950 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.