Abstract
An enhanced photon propagation method is used to calculate the
forces and torque present on each sphere of a system of particles
located in the vicinity of focused laser-trapping
beams. Infinitesimal trajectory displacements are computed through
classical mechanics and the new particle position used to define the
next trapping system geometry considered. Repeated applications of
the process, implemented as a computer program, enables full trajectory
plotting and the dynamic behavior of the systems to be explored as a
function of time.
© 1998 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (9)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (12)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription