Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement

Not Accessible

Your library or personal account may give you access

Abstract

Ultranarrow laser linewidth measurement using an optimized loss- compensated recirculating delayed self-heterodyne interferometer is described. An experimental setup is constructed to measure subkilohertz laser linewidths. The system parameters are optimized to obtain the best beat signals. The experimental results agree well with the theoretical analysis. Two methods of linewidth interpretation are presented and analyzed based on the experimental results. It is proved that a loss-compensated recirculating delayed self-heterodyne interferometer is an effective tool for measuring an ultranarrow laser linewidth.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Precise laser linewidth measurement by feature extraction with short-delay self-homodyne

Shihong Huang, Minggui Wan, Jiayang Wu, Dunke Lu, Bingzhi Zhang, Yanhua Zheng, Cuihong Liu, and Xiaohui Fang
Appl. Opt. 61(7) 1791-1796 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved