Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-dimensional graphic physically based simulator of rainbows together with the background scene

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents a single scattering 3D graphics simulator of rainbows that includes the thickness of the rain shaft and the background scenery. The simulator is devised so that we can find a good configuration of the sun, the viewers, and the volume of water drops in a complicated geometric setting. The background-scene geometry and light-reflecting properties are modelled using 3D graphics tools. The simulator allows both the light reflected from the background surface and the light scattered by water drops to contribute to the final image by taking the depth to the background surface into account. The simulator generates an image of the rainbow by using the radiative transfer equation (RTE). We use ray optics to compute the average scattering cross section and the average phase function of particles that are the main parameters of the RTE. Depending on the density distribution of the water drops, the rainbow is perceived to be translucent, and the background scene is visible through the rainbow. We simulate other effects of the variation of the water-dropdensity and the location of the viewer, e.g., the visibility of the secondary rainbow, the brightness of the sky around the rainbow, the close-up view of the rainbow, and the full-circle rainbow. We explain these effects partly by computing the luminance contrasts of the primary and secondary bows against their local backgrounds.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Simulating rainbows in their atmospheric environment

Stanley David Gedzelman
Appl. Opt. 47(34) H176-H181 (2008)

Spectral measurement and modeling of natural rainbows

Raymond L. Lee
Appl. Opt. 56(19) G42-G50 (2017)

Imaging polarimetry of the rainbow

András Barta, Gábor Horváth, Balázs Bernáth, and Viktor Benno Meyer-Rochow
Appl. Opt. 42(3) 399-405 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved