Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simultaneous observation of a glory and in-situ microphysical cloud properties

Open Access Open Access

Abstract

While making airborne measurements of cloud particles, a bright glory was observed on a thin layer cloud. By deliberately flying through this glory-producing cloud on several occasions, cloud particle size distributions were obtained. We found that warm liquid clouds with narrow cloud droplet size distributions are responsible for producing the observed glory. This paper presents these results and compares the results of Mie theory simulations with an image of the glory.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Can cirrus clouds produce glories?

Kenneth Sassen, W. Patrick Arnott, Jennifer M. Barnett, and Steve Aulenbach
Appl. Opt. 37(9) 1427-1433 (1998)

Glory of clouds in the near infrared

James D. Spinhirne and Teruyuki Nakajima
Appl. Opt. 33(21) 4652-4662 (1994)

Simulating glories and cloudbows in color

Stanley D. Gedzelman
Appl. Opt. 42(3) 429-435 (2003)

References

  • View by:

  1. H. C. Bryant and N. Jarmie, “The glory,” Sci. Am. 231, 60–71 (1974).
    [Crossref]
  2. D. K. Lynch and S. N. Futterman, “Ulloa’s observations of the glory, fogbow, and unidentified phenomenon,” Appl. Opt. 30, 3538–3541 (1991).
    [Crossref]
  3. J. D. Spinhirne and T. Nakajima, “Glory of clouds in the near infrared,” Appl. Opt. 33, 4652–4662 (1994).
    [Crossref]
  4. S. D. Gedzelman, “Simulating glories and cloudbows in color,” Appl. Opt. 42, 429–435 (2003).
    [Crossref]
  5. P. Laven, “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt. 42, 436–444 (2003).
    [Crossref]
  6. B. Mayer, M. Schröder, R. Preusker, and L. Schüller, “Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study,” Atmos. Chem. Phys. 4, 1255–1263 (2004).
  7. P. Laven, “Atmospheric glories: simulations and observations,” Appl. Opt. 44, 5667–5674 (2005).
    [Crossref]
  8. P. Laven, “Noncircular glories and their relationship to cloud droplet size,” Appl. Opt. 47, H25–H30 (2008).
    [Crossref]
  9. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), reprint of 1957 Wiley edition.
  10. K. Sassen, W. P. Arnott, J. M. Barnett, and S. Aulenbach, “Can cirrus clouds produce glories?” Appl. Opt. 37, 1427–1433 (1998).
    [Crossref]
  11. R. Lenke, U. Mack, and G. Maret, “Comparison of the ‘glory’ with coherent backscattering of light in turbid media,” J. Opt. A 4, 309–314 (2002).
    [Crossref]
  12. H. M. Nussenzveig, “The science of the glory,” Sci. Am. 306, 68–73 (2011).
    [Crossref]
  13. H. M. Nussenzveig, “Light tunneling in clouds,” Appl. Opt. 42, 1588–1593 (2003).
    [Crossref]
  14. P. Laven, “How are glories formed?” Appl. Opt. 44, 5675–5683 (2005).
    [Crossref]
  15. A. N. Nevzorov, “Glory phenomenon informs of presence and phase state of liquid water in cold clouds,” Atmos. Res. 82, 367–378 (2006).
    [Crossref]
  16. B. Mayer and C. Emde, “Comment on “Glory phenomenon informs of presence and phase state of liquid water in cold clouds” by A. N. Nevzorov,” Atmos. Res. 84, 410–419 (2007).
    [Crossref]
  17. P. L. Israelevich, J. H. Joseph, Z. Levin, and Y. Yair, “First observation of glory from space,” Bull. Am. Meteorol. Soc. 90, 1772–1774 (2009).
    [Crossref]
  18. K. Floor, “Glory from space,” in Weather (2012), Vol. 67, p. 41.
  19. F.-M. Bréon and P. Goloub, “Cloud droplet effective radius from spaceborne polarization measurements,” Geophys. Res. Lett. 25, 1879–1882 (1998).
    [Crossref]
  20. J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).
  21. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2006), p. 1202.
  22. J.-L. Brenguier, F. Burnet, and O. Geoffroy, “Cloud optical thickness and liquid water path—does the k coefficient vary with droplet concentration?” Atmos. Chem. Phys. 11, 9771–9786 (2011).

2012 (1)

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

2011 (2)

J.-L. Brenguier, F. Burnet, and O. Geoffroy, “Cloud optical thickness and liquid water path—does the k coefficient vary with droplet concentration?” Atmos. Chem. Phys. 11, 9771–9786 (2011).

H. M. Nussenzveig, “The science of the glory,” Sci. Am. 306, 68–73 (2011).
[Crossref]

2009 (1)

P. L. Israelevich, J. H. Joseph, Z. Levin, and Y. Yair, “First observation of glory from space,” Bull. Am. Meteorol. Soc. 90, 1772–1774 (2009).
[Crossref]

2008 (1)

2007 (1)

B. Mayer and C. Emde, “Comment on “Glory phenomenon informs of presence and phase state of liquid water in cold clouds” by A. N. Nevzorov,” Atmos. Res. 84, 410–419 (2007).
[Crossref]

2006 (1)

A. N. Nevzorov, “Glory phenomenon informs of presence and phase state of liquid water in cold clouds,” Atmos. Res. 82, 367–378 (2006).
[Crossref]

2005 (2)

2004 (1)

B. Mayer, M. Schröder, R. Preusker, and L. Schüller, “Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study,” Atmos. Chem. Phys. 4, 1255–1263 (2004).

2003 (3)

2002 (1)

R. Lenke, U. Mack, and G. Maret, “Comparison of the ‘glory’ with coherent backscattering of light in turbid media,” J. Opt. A 4, 309–314 (2002).
[Crossref]

1998 (2)

F.-M. Bréon and P. Goloub, “Cloud droplet effective radius from spaceborne polarization measurements,” Geophys. Res. Lett. 25, 1879–1882 (1998).
[Crossref]

K. Sassen, W. P. Arnott, J. M. Barnett, and S. Aulenbach, “Can cirrus clouds produce glories?” Appl. Opt. 37, 1427–1433 (1998).
[Crossref]

1994 (1)

1991 (1)

1974 (1)

H. C. Bryant and N. Jarmie, “The glory,” Sci. Am. 231, 60–71 (1974).
[Crossref]

Arnott, W. P.

Aulenbach, S.

Barnett, J. M.

Bhalwanker, R. V.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Brenguier, J.-L.

J.-L. Brenguier, F. Burnet, and O. Geoffroy, “Cloud optical thickness and liquid water path—does the k coefficient vary with droplet concentration?” Atmos. Chem. Phys. 11, 9771–9786 (2011).

Bréon, F.-M.

F.-M. Bréon and P. Goloub, “Cloud droplet effective radius from spaceborne polarization measurements,” Geophys. Res. Lett. 25, 1879–1882 (1998).
[Crossref]

Bryant, H. C.

H. C. Bryant and N. Jarmie, “The glory,” Sci. Am. 231, 60–71 (1974).
[Crossref]

Burnet, F.

J.-L. Brenguier, F. Burnet, and O. Geoffroy, “Cloud optical thickness and liquid water path—does the k coefficient vary with droplet concentration?” Atmos. Chem. Phys. 11, 9771–9786 (2011).

Dani, K. K.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Deshpande, C. G.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Emde, C.

B. Mayer and C. Emde, “Comment on “Glory phenomenon informs of presence and phase state of liquid water in cold clouds” by A. N. Nevzorov,” Atmos. Res. 84, 410–419 (2007).
[Crossref]

Floor, K.

K. Floor, “Glory from space,” in Weather (2012), Vol. 67, p. 41.

Futterman, S. N.

Gedzelman, S. D.

Geoffroy, O.

J.-L. Brenguier, F. Burnet, and O. Geoffroy, “Cloud optical thickness and liquid water path—does the k coefficient vary with droplet concentration?” Atmos. Chem. Phys. 11, 9771–9786 (2011).

Goloub, P.

F.-M. Bréon and P. Goloub, “Cloud droplet effective radius from spaceborne polarization measurements,” Geophys. Res. Lett. 25, 1879–1882 (1998).
[Crossref]

Goswami, B. N.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Israelevich, P. L.

P. L. Israelevich, J. H. Joseph, Z. Levin, and Y. Yair, “First observation of glory from space,” Bull. Am. Meteorol. Soc. 90, 1772–1774 (2009).
[Crossref]

Jarmie, N.

H. C. Bryant and N. Jarmie, “The glory,” Sci. Am. 231, 60–71 (1974).
[Crossref]

Joseph, J. H.

P. L. Israelevich, J. H. Joseph, Z. Levin, and Y. Yair, “First observation of glory from space,” Bull. Am. Meteorol. Soc. 90, 1772–1774 (2009).
[Crossref]

Joshi, R. R.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Kandalgaonkar, S. S.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Khaladkar, R. M.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Konwar, M.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Kulkarni, J. R.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Kumari, B. P.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Laven, P.

Lenke, R.

R. Lenke, U. Mack, and G. Maret, “Comparison of the ‘glory’ with coherent backscattering of light in turbid media,” J. Opt. A 4, 309–314 (2002).
[Crossref]

Levin, Z.

P. L. Israelevich, J. H. Joseph, Z. Levin, and Y. Yair, “First observation of glory from space,” Bull. Am. Meteorol. Soc. 90, 1772–1774 (2009).
[Crossref]

Lynch, D. K.

Mack, U.

R. Lenke, U. Mack, and G. Maret, “Comparison of the ‘glory’ with coherent backscattering of light in turbid media,” J. Opt. A 4, 309–314 (2002).
[Crossref]

Maheshkumar, R. S.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Majumdar, V. R.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Maret, G.

R. Lenke, U. Mack, and G. Maret, “Comparison of the ‘glory’ with coherent backscattering of light in turbid media,” J. Opt. A 4, 309–314 (2002).
[Crossref]

Mayer, B.

B. Mayer and C. Emde, “Comment on “Glory phenomenon informs of presence and phase state of liquid water in cold clouds” by A. N. Nevzorov,” Atmos. Res. 84, 410–419 (2007).
[Crossref]

B. Mayer, M. Schröder, R. Preusker, and L. Schüller, “Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study,” Atmos. Chem. Phys. 4, 1255–1263 (2004).

Morwal, S. B.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Nair, S.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Nakajima, T.

Narkhedkar, S. G.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Nath, A.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Nevzorov, A. N.

A. N. Nevzorov, “Glory phenomenon informs of presence and phase state of liquid water in cold clouds,” Atmos. Res. 82, 367–378 (2006).
[Crossref]

Nussenzveig, H. M.

H. M. Nussenzveig, “The science of the glory,” Sci. Am. 306, 68–73 (2011).
[Crossref]

H. M. Nussenzveig, “Light tunneling in clouds,” Appl. Opt. 42, 1588–1593 (2003).
[Crossref]

Pandis, S. N.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2006), p. 1202.

Pandithurai, G.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Prabha, T. V.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Preusker, R.

B. Mayer, M. Schröder, R. Preusker, and L. Schüller, “Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study,” Atmos. Chem. Phys. 4, 1255–1263 (2004).

Puranik, P. V.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Safai, P. D.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Sapre, V. V.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Sassen, K.

Schröder, M.

B. Mayer, M. Schröder, R. Preusker, and L. Schüller, “Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study,” Atmos. Chem. Phys. 4, 1255–1263 (2004).

Schüller, L.

B. Mayer, M. Schröder, R. Preusker, and L. Schüller, “Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study,” Atmos. Chem. Phys. 4, 1255–1263 (2004).

Seinfeld, J. H.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2006), p. 1202.

Spinhirne, J. D.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), reprint of 1957 Wiley edition.

Vijaykumar, R.

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Yair, Y.

P. L. Israelevich, J. H. Joseph, Z. Levin, and Y. Yair, “First observation of glory from space,” Bull. Am. Meteorol. Soc. 90, 1772–1774 (2009).
[Crossref]

Appl. Opt. (9)

Atmos. Chem. Phys. (2)

B. Mayer, M. Schröder, R. Preusker, and L. Schüller, “Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study,” Atmos. Chem. Phys. 4, 1255–1263 (2004).

J.-L. Brenguier, F. Burnet, and O. Geoffroy, “Cloud optical thickness and liquid water path—does the k coefficient vary with droplet concentration?” Atmos. Chem. Phys. 11, 9771–9786 (2011).

Atmos. Res. (2)

A. N. Nevzorov, “Glory phenomenon informs of presence and phase state of liquid water in cold clouds,” Atmos. Res. 82, 367–378 (2006).
[Crossref]

B. Mayer and C. Emde, “Comment on “Glory phenomenon informs of presence and phase state of liquid water in cold clouds” by A. N. Nevzorov,” Atmos. Res. 84, 410–419 (2007).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

P. L. Israelevich, J. H. Joseph, Z. Levin, and Y. Yair, “First observation of glory from space,” Bull. Am. Meteorol. Soc. 90, 1772–1774 (2009).
[Crossref]

Curr. Sci. (1)

J. R. Kulkarni, R. S. Maheshkumar, S. B. Morwal, B. P. Kumari, M. Konwar, C. G. Deshpande, R. R. Joshi, R. V. Bhalwanker, G. Pandithurai, P. D. Safai, S. G. Narkhedkar, K. K. Dani, A. Nath, S. Nair, V. V. Sapre, P. V. Puranik, S. S. Kandalgaonkar, V. R. Majumdar, R. M. Khaladkar, R. Vijaykumar, T. V. Prabha, and B. N. Goswami, “The cloud aerosol interactions and precipitation enhancement experiment (CAIPEEX): overview and preliminary results,” Curr. Sci. 102, 413–425 (2012).

Geophys. Res. Lett. (1)

F.-M. Bréon and P. Goloub, “Cloud droplet effective radius from spaceborne polarization measurements,” Geophys. Res. Lett. 25, 1879–1882 (1998).
[Crossref]

J. Opt. A (1)

R. Lenke, U. Mack, and G. Maret, “Comparison of the ‘glory’ with coherent backscattering of light in turbid media,” J. Opt. A 4, 309–314 (2002).
[Crossref]

Sci. Am. (2)

H. M. Nussenzveig, “The science of the glory,” Sci. Am. 306, 68–73 (2011).
[Crossref]

H. C. Bryant and N. Jarmie, “The glory,” Sci. Am. 231, 60–71 (1974).
[Crossref]

Other (3)

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 2006), p. 1202.

K. Floor, “Glory from space,” in Weather (2012), Vol. 67, p. 41.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), reprint of 1957 Wiley edition.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Photographs of the thin dark layer cloud where the glory phenomena were observed.
Fig. 2.
Fig. 2. (a) Altitude and temperature of the aircraft observation of clouds on 28 October 2014. Glory phenomenon was observed formed by these thin layer clouds. (b) Variations of total droplet concentrations ( N c , cm 3 ), mean diameter ( D m , μm), liquid water content (LWC, gm 3 ), and spectral width ( σ ) of the droplet spectra. DSDs used to simulate the glory phenomenon were of the first few seconds of cloud pass. (Shown by an ellipse.)
Fig. 3.
Fig. 3. Typical cloud droplet size distribution of glory-producing cloud (shown as glory cloud), convective cloud, and stratus cloud as observed from aircraft observation at 2 Hz resolution. DSD parameters, e.g., N c , D m , σ , and LWC are provided for each distribution.
Fig. 4.
Fig. 4. Simulations of single scattering of sunlight using the measured DSDs shown in Fig. 2 for (a) the convective cloud, (b) the stratus cloud, and (c) the glory-producing cloud.
Fig. 5.
Fig. 5. Glory phenomenon observed on 28 October 2014 near Mahabaleswar, India. Contrast of the colored rings are enhanced. The simulated rings are superimposed on the observed glory rings. The Mie scattering simulation is based on the measured droplet size distribution shown in Fig. 3 for the glory-producing cloud.

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved