Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mueller matrix characterizations of circularly polarized reflections from golden scarab beetles

Open Access Open Access

Abstract

Circularly polarized light (CPL) reflections are rare in nature. Only a few animal groups—most notably certain stomatopod crustaceans and certain beetles in the family Scarabaeidae—are known to reflect CPL from incident unpolarized light. Here, we examine five species of metallic scarabs in the genus Chrysina that, to the naked human eye, look remarkably similar. Using a spectropolarimetric reflectometer to characterize the complete Mueller matrix elements of the beetles’ elytral surfaces, we found that four of the five species were strongly left-handed circularly polarized (LHCP), and only one scarab species, Chrysina resplendens, had an overall lower degree of polarization and switched from LHCP to right-handed circularly polarized reflectance depending on wavelength.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
More Like This
Mueller-matrix characterization of beetle cuticle: polarized and unpolarized reflections from representative architectures

Ian Hodgkinson, Sam Lowrey, Levi Bourke, Andrew Parker, and Martin W. McCall
Appl. Opt. 49(24) 4558-4567 (2010)

Modeling of light interaction with exoskeletons of scarab beetles

Sergiy Valyukh and Kenneth Järrendahl
Appl. Opt. 56(9) 2510-2516 (2017)

Polarization properties of Scarabaeidae

Dennis H. Goldstein
Appl. Opt. 45(30) 7944-7950 (2006)

References

  • View by:

  1. A. R. Parker, D. R. McKenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).
  2. D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” Am. Entom. 553, 224–230 (2007).
    [Crossref]
  3. T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells—a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mater. 10, 299–314 (2008).
    [Crossref]
  4. V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
    [Crossref]
  5. D. E. Azofeifa, M. Hernández-Jiménez, E. Libby, A. Solís, C. Barboza-Aguilar, and W. E. Vargas, “A quantitative assessment approach of feasible optical mechanisms contributing to structural color of golden-like Chrysina aurigans scarab beetles,” J. Quant. Spectrosc. Radiat. Transfer 160, 63–74 (2015).
    [Crossref]
  6. C. Q. Cook and A. Amir, “Theory of chirped photonic crystals in biological broadband reflectors,” Optica 3, 1436–1439 (2016).
    [Crossref]
  7. W. E. Vargas, E. Avendaño, M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, Á. G. Solís, and C. Barboza-Aguilar, “Photonic crystal characterization of the cuticles of Chrysina chrysargyrea and Chrysina optima jewel scarab beetles,” Biomimetics 3, 30 (2018).
    [Crossref]
  8. P. Bouchal, J. Kapitán, M. Konečný, M. Zbončák, and Z. Bouchal, “Non-diffracting light in nature: anomalously reflected self-healing Bessel beams from jewel scarabs,” APL Photon. 4, 126102 (2019).
    [Crossref]
  9. D. C. Hawks, “Taxonomic and nomenclatural changes in Chrysina and a synonymic checklist of species (Scarabaeidae: Rutelinae),” Occ. Pap. Consortium Coleopterorum 4, 1–8 (2001).
  10. A. A. Michelson, “On metallic colouring in birds and insects,” Philos. Mag. 21(124), 554–567 (1911).
    [Crossref]
  11. J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linn. Soc. 100, 585–596 (2010).
    [Crossref]
  12. S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London B 178, 205–225 (1971).
    [Crossref]
  13. L. T. McDonald, E. D. Finlayson, B. D. Wilts, and P. Vukusic, “Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure,” J. R. Soc. Interface 7, 20160129 (2017).
    [Crossref]
  14. E. D. Finlayson, L. T. McDonald, and P. Vukusic, “Optically ambidextrous circularly polarized reflection from the chiral cuticle of the scarab beetle Chrysina resplendens,” J. R. Soc. Interface 14, 20170129 (2017).
    [Crossref]
  15. R. Hegedüs, S. Győző, and H. Gábor, “Imaging polarimetry of the circularly polarizing cuticle of scarab beetles (Coleoptera: Rutelidae, Cetoniidae),” Vis. Res. 46, 2786–2797 (2006).
    [Crossref]
  16. I. Hodgkinson, S. Lowrey, L. Bourke, A. Parker, and M. W. McCall, “Mueller-matrix characterization of beetle cuticle: polarized and unpolarized reflections from representative architectures,” Appl. Opt. 49, 4558–4567 (2010).
    [Crossref]
  17. L. Fernández del Río, An Investigation of the Polarization States of Light Reflected from Scarab Beetles of the Chrysina Genus (Linköping University, 2011).
  18. H. Arwin, R. S. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
    [Crossref]
  19. A. Mendoza-Galván, K. Järrendahl, and H. Arwin, “Mueller matrix modeling of the architecture in the cuticle of the beetle Chrysina resplendens,” J. Vac. Sci. Technol. B 37, 062904 (2019).
    [Crossref]
  20. D. H. Goldstein, “Reflection properties of Scarabaeidae,” Proc. SPIE 5888, 58880T (2005).
    [Crossref]
  21. D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt. 45, 7944–7950 (2006).
    [Crossref]
  22. H. W. Bates, “Insecta. Coleoptera,” in Part 2. Pectinicornia and Lamellicornia, O. Salvin and G. F. du Cane, eds. (R. H. Porter, 1988), Vol. II, pp. 1–432.
  23. A. Boucard, “Monographic list of the Coleoptera of the genus Plusiotis of America, north of Panama, with descriptions of several new species,” Proc. Zool. Soc. Lond.117–125 (1875).
  24. A. Sallé, “Diagnose d’une nouvelle espèce de Pelidnota (P. chrysargyrea),” Ann. Soc. Entomol. Fr. 5, 362 (1874).
  25. F. Ohaus, “Plusiotis strasseni new sp,” Senckenbergiana 6, 185–186 (1924).
  26. M. R. Moore, M. L. Jameson, B. H. Garner, C. Audibert, A. B. Smith, and M. Seidel, “Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies,” ZooKeys 666, 1–349 (2017).
    [Crossref]
  27. J. L. LeConte, “Descriptions of new coleoptera collected by Thos. H. Webb, M. D., in the years 1850–1851 and 52, while secretary to the U. S. and mexican boundary commission,” Proc. Acad. Nat. Sci. Philadelphia 7, 220–225 (1854).
  28. D. H. Goldstein and D. B. Chenault, “Spectropolarimetric reflectometer,” Opt. Eng. 41, 1013–1020 (2002).
    [Crossref]
  29. D. H. Goldstein, D. B. Chenault, and M. Owens, “Spectropolarimetric reflectometer,” U.S. patent6,618,145 (9September2003).
  30. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978).
    [Crossref]
  31. D. H. Goldstein and R. A. Chipman, “Error analysis of a Mueller matrix polarimeter,” J. Opt. Soc. Am. A 7, 693–7700 (1990).
    [Crossref]
  32. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992).
    [Crossref]
  33. D. H. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2011).
  34. A. C. Neville, “Metallic gold and silver colours in some insect cuticles,” J. Insect Physiol. 23, 1267–1274 (1977).
    [Crossref]
  35. A. C. Neville and S. Caveney, “Scarabeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. 44, 531–562 (1969).
    [Crossref]
  36. A. T. Berlind, B. D. Johs, and K. Järrendahl, “Cuticle structure of the scarab beetle Cetonia aurata analyzed by regression analysis of Mueller-matrix ellipsometric data,” Opt. Express 21, 22645–22656 (2013).
    [Crossref]
  37. H. Arwin, R. Magnusson, E. Garcia-Caurel, C. Fallet, K. Järrendahl, M. Foldyna, A. De Martino, and R. Ossikovski, “Sum decomposition of Mueller-matrix images and spectra of beetle cuticles,” Opt. Express 23, 1951–1966 (2015).
    [Crossref]
  38. E. Muñoz-Pineda, K. Järrendahl, H. Arwin, and A. Mendoza-Galván, “Symmetries and relationships between elements of the Mueller matrix spectra of the cuticle of the beetle Cotinis mutabilis,” Thin Solid Films 571, 660–665 (2014).
    [Crossref]
  39. R. S. Magnusson, H. Arwin, E. García-Caurel, K. Järrendahl, and R. Ossikovski, “Sum regression decomposition of spectral and angle-resolved Mueller matrices from biological reflectors,” Appl. Opt. 55, 4060–4065 (2016).
    [Crossref]
  40. Y. L. Gagnon, R. M. Templin, M. J. How, and N. J. Marshall, “Circularly polarized light as a communication signal in mantis shrimps,” Curr. Biol. 25, 3074–3078 (2015).
    [Crossref]
  41. T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
    [Crossref]
  42. P. C. Brady and M. E. Cummings, “Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa,” Am. Nat. 175, 614–620 (2010).
    [Crossref]
  43. J. Miao, Y. Wu, K. Li, Y. Jiang, Z. Gong, Y. X. Duan, and T. Li, “Evidence for visually mediated copulation frequency in the scarab beetle Anomala corpulenta,” J. Insect Behav. 28, 175–182 (2015).
    [Crossref]
  44. M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
    [Crossref]
  45. K. Kjernsmo, H. M. Whitney, N. E. Scott-Samuel, J. R. Hall, H. Knowles, L. Talas, and I. C. Cuthill, “Iridescence as camouflage,” Curr. Biol. 30, 551–555 (2020).
    [Crossref]
  46. K. D. Feller, T. M. Jordan, D. Wilby, and N. W. Roberts, “Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage,” Phil. Trans. R. Soc. B 372:20160336 (2017).
    [Crossref]

2020 (1)

K. Kjernsmo, H. M. Whitney, N. E. Scott-Samuel, J. R. Hall, H. Knowles, L. Talas, and I. C. Cuthill, “Iridescence as camouflage,” Curr. Biol. 30, 551–555 (2020).
[Crossref]

2019 (2)

P. Bouchal, J. Kapitán, M. Konečný, M. Zbončák, and Z. Bouchal, “Non-diffracting light in nature: anomalously reflected self-healing Bessel beams from jewel scarabs,” APL Photon. 4, 126102 (2019).
[Crossref]

A. Mendoza-Galván, K. Järrendahl, and H. Arwin, “Mueller matrix modeling of the architecture in the cuticle of the beetle Chrysina resplendens,” J. Vac. Sci. Technol. B 37, 062904 (2019).
[Crossref]

2018 (1)

W. E. Vargas, E. Avendaño, M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, Á. G. Solís, and C. Barboza-Aguilar, “Photonic crystal characterization of the cuticles of Chrysina chrysargyrea and Chrysina optima jewel scarab beetles,” Biomimetics 3, 30 (2018).
[Crossref]

2017 (4)

L. T. McDonald, E. D. Finlayson, B. D. Wilts, and P. Vukusic, “Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure,” J. R. Soc. Interface 7, 20160129 (2017).
[Crossref]

E. D. Finlayson, L. T. McDonald, and P. Vukusic, “Optically ambidextrous circularly polarized reflection from the chiral cuticle of the scarab beetle Chrysina resplendens,” J. R. Soc. Interface 14, 20170129 (2017).
[Crossref]

M. R. Moore, M. L. Jameson, B. H. Garner, C. Audibert, A. B. Smith, and M. Seidel, “Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies,” ZooKeys 666, 1–349 (2017).
[Crossref]

K. D. Feller, T. M. Jordan, D. Wilby, and N. W. Roberts, “Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage,” Phil. Trans. R. Soc. B 372:20160336 (2017).
[Crossref]

2016 (2)

2015 (4)

D. E. Azofeifa, M. Hernández-Jiménez, E. Libby, A. Solís, C. Barboza-Aguilar, and W. E. Vargas, “A quantitative assessment approach of feasible optical mechanisms contributing to structural color of golden-like Chrysina aurigans scarab beetles,” J. Quant. Spectrosc. Radiat. Transfer 160, 63–74 (2015).
[Crossref]

Y. L. Gagnon, R. M. Templin, M. J. How, and N. J. Marshall, “Circularly polarized light as a communication signal in mantis shrimps,” Curr. Biol. 25, 3074–3078 (2015).
[Crossref]

H. Arwin, R. Magnusson, E. Garcia-Caurel, C. Fallet, K. Järrendahl, M. Foldyna, A. De Martino, and R. Ossikovski, “Sum decomposition of Mueller-matrix images and spectra of beetle cuticles,” Opt. Express 23, 1951–1966 (2015).
[Crossref]

J. Miao, Y. Wu, K. Li, Y. Jiang, Z. Gong, Y. X. Duan, and T. Li, “Evidence for visually mediated copulation frequency in the scarab beetle Anomala corpulenta,” J. Insect Behav. 28, 175–182 (2015).
[Crossref]

2014 (1)

E. Muñoz-Pineda, K. Järrendahl, H. Arwin, and A. Mendoza-Galván, “Symmetries and relationships between elements of the Mueller matrix spectra of the cuticle of the beetle Cotinis mutabilis,” Thin Solid Films 571, 660–665 (2014).
[Crossref]

2013 (1)

2012 (2)

H. Arwin, R. S. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

2010 (3)

P. C. Brady and M. E. Cummings, “Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa,” Am. Nat. 175, 614–620 (2010).
[Crossref]

J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linn. Soc. 100, 585–596 (2010).
[Crossref]

I. Hodgkinson, S. Lowrey, L. Bourke, A. Parker, and M. W. McCall, “Mueller-matrix characterization of beetle cuticle: polarized and unpolarized reflections from representative architectures,” Appl. Opt. 49, 4558–4567 (2010).
[Crossref]

2009 (1)

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[Crossref]

2008 (2)

T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells—a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mater. 10, 299–314 (2008).
[Crossref]

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[Crossref]

2007 (1)

D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” Am. Entom. 553, 224–230 (2007).
[Crossref]

2006 (2)

R. Hegedüs, S. Győző, and H. Gábor, “Imaging polarimetry of the circularly polarizing cuticle of scarab beetles (Coleoptera: Rutelidae, Cetoniidae),” Vis. Res. 46, 2786–2797 (2006).
[Crossref]

D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt. 45, 7944–7950 (2006).
[Crossref]

2005 (1)

D. H. Goldstein, “Reflection properties of Scarabaeidae,” Proc. SPIE 5888, 58880T (2005).
[Crossref]

2002 (1)

D. H. Goldstein and D. B. Chenault, “Spectropolarimetric reflectometer,” Opt. Eng. 41, 1013–1020 (2002).
[Crossref]

2001 (1)

D. C. Hawks, “Taxonomic and nomenclatural changes in Chrysina and a synonymic checklist of species (Scarabaeidae: Rutelinae),” Occ. Pap. Consortium Coleopterorum 4, 1–8 (2001).

1998 (1)

A. R. Parker, D. R. McKenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

1992 (1)

1990 (1)

1978 (1)

1977 (1)

A. C. Neville, “Metallic gold and silver colours in some insect cuticles,” J. Insect Physiol. 23, 1267–1274 (1977).
[Crossref]

1971 (1)

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London B 178, 205–225 (1971).
[Crossref]

1969 (1)

A. C. Neville and S. Caveney, “Scarabeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. 44, 531–562 (1969).
[Crossref]

1924 (1)

F. Ohaus, “Plusiotis strasseni new sp,” Senckenbergiana 6, 185–186 (1924).

1911 (1)

A. A. Michelson, “On metallic colouring in birds and insects,” Philos. Mag. 21(124), 554–567 (1911).
[Crossref]

1874 (1)

A. Sallé, “Diagnose d’une nouvelle espèce de Pelidnota (P. chrysargyrea),” Ann. Soc. Entomol. Fr. 5, 362 (1874).

1854 (1)

J. L. LeConte, “Descriptions of new coleoptera collected by Thos. H. Webb, M. D., in the years 1850–1851 and 52, while secretary to the U. S. and mexican boundary commission,” Proc. Acad. Nat. Sci. Philadelphia 7, 220–225 (1854).

Amir, A.

Arwin, H.

A. Mendoza-Galván, K. Järrendahl, and H. Arwin, “Mueller matrix modeling of the architecture in the cuticle of the beetle Chrysina resplendens,” J. Vac. Sci. Technol. B 37, 062904 (2019).
[Crossref]

R. S. Magnusson, H. Arwin, E. García-Caurel, K. Järrendahl, and R. Ossikovski, “Sum regression decomposition of spectral and angle-resolved Mueller matrices from biological reflectors,” Appl. Opt. 55, 4060–4065 (2016).
[Crossref]

H. Arwin, R. Magnusson, E. Garcia-Caurel, C. Fallet, K. Järrendahl, M. Foldyna, A. De Martino, and R. Ossikovski, “Sum decomposition of Mueller-matrix images and spectra of beetle cuticles,” Opt. Express 23, 1951–1966 (2015).
[Crossref]

E. Muñoz-Pineda, K. Järrendahl, H. Arwin, and A. Mendoza-Galván, “Symmetries and relationships between elements of the Mueller matrix spectra of the cuticle of the beetle Cotinis mutabilis,” Thin Solid Films 571, 660–665 (2014).
[Crossref]

H. Arwin, R. S. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Audibert, C.

M. R. Moore, M. L. Jameson, B. H. Garner, C. Audibert, A. B. Smith, and M. Seidel, “Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies,” ZooKeys 666, 1–349 (2017).
[Crossref]

Avendaño, E.

W. E. Vargas, E. Avendaño, M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, Á. G. Solís, and C. Barboza-Aguilar, “Photonic crystal characterization of the cuticles of Chrysina chrysargyrea and Chrysina optima jewel scarab beetles,” Biomimetics 3, 30 (2018).
[Crossref]

Azofeifa, D. E.

W. E. Vargas, E. Avendaño, M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, Á. G. Solís, and C. Barboza-Aguilar, “Photonic crystal characterization of the cuticles of Chrysina chrysargyrea and Chrysina optima jewel scarab beetles,” Biomimetics 3, 30 (2018).
[Crossref]

D. E. Azofeifa, M. Hernández-Jiménez, E. Libby, A. Solís, C. Barboza-Aguilar, and W. E. Vargas, “A quantitative assessment approach of feasible optical mechanisms contributing to structural color of golden-like Chrysina aurigans scarab beetles,” J. Quant. Spectrosc. Radiat. Transfer 160, 63–74 (2015).
[Crossref]

Azzam, R. M. A.

Barboza-Aguilar, C.

W. E. Vargas, E. Avendaño, M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, Á. G. Solís, and C. Barboza-Aguilar, “Photonic crystal characterization of the cuticles of Chrysina chrysargyrea and Chrysina optima jewel scarab beetles,” Biomimetics 3, 30 (2018).
[Crossref]

D. E. Azofeifa, M. Hernández-Jiménez, E. Libby, A. Solís, C. Barboza-Aguilar, and W. E. Vargas, “A quantitative assessment approach of feasible optical mechanisms contributing to structural color of golden-like Chrysina aurigans scarab beetles,” J. Quant. Spectrosc. Radiat. Transfer 160, 63–74 (2015).
[Crossref]

Barfoed, M.

T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells—a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mater. 10, 299–314 (2008).
[Crossref]

Bates, H. W.

H. W. Bates, “Insecta. Coleoptera,” in Part 2. Pectinicornia and Lamellicornia, O. Salvin and G. F. du Cane, eds. (R. H. Porter, 1988), Vol. II, pp. 1–432.

Berlind, A. T.

Biro, L.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

Blahó, M.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

Boucard, A.

A. Boucard, “Monographic list of the Coleoptera of the genus Plusiotis of America, north of Panama, with descriptions of several new species,” Proc. Zool. Soc. Lond.117–125 (1875).

Bouchal, P.

P. Bouchal, J. Kapitán, M. Konečný, M. Zbončák, and Z. Bouchal, “Non-diffracting light in nature: anomalously reflected self-healing Bessel beams from jewel scarabs,” APL Photon. 4, 126102 (2019).
[Crossref]

Bouchal, Z.

P. Bouchal, J. Kapitán, M. Konečný, M. Zbončák, and Z. Bouchal, “Non-diffracting light in nature: anomalously reflected self-healing Bessel beams from jewel scarabs,” APL Photon. 4, 126102 (2019).
[Crossref]

Bourke, L.

Brady, P. C.

P. C. Brady and M. E. Cummings, “Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa,” Am. Nat. 175, 614–620 (2010).
[Crossref]

Caldwell, R.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[Crossref]

Caveney, S.

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London B 178, 205–225 (1971).
[Crossref]

A. C. Neville and S. Caveney, “Scarabeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. 44, 531–562 (1969).
[Crossref]

Chenault, D. B.

D. H. Goldstein and D. B. Chenault, “Spectropolarimetric reflectometer,” Opt. Eng. 41, 1013–1020 (2002).
[Crossref]

D. H. Goldstein, D. B. Chenault, and M. Owens, “Spectropolarimetric reflectometer,” U.S. patent6,618,145 (9September2003).

Chiou, T.-H.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[Crossref]

Chipman, R. A.

Cook, C. Q.

Crne, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[Crossref]

Cronin, T.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[Crossref]

Cummings, M. E.

P. C. Brady and M. E. Cummings, “Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa,” Am. Nat. 175, 614–620 (2010).
[Crossref]

Cuthill, I. C.

K. Kjernsmo, H. M. Whitney, N. E. Scott-Samuel, J. R. Hall, H. Knowles, L. Talas, and I. C. Cuthill, “Iridescence as camouflage,” Curr. Biol. 30, 551–555 (2020).
[Crossref]

De Martino, A.

Duan, Y. X.

J. Miao, Y. Wu, K. Li, Y. Jiang, Z. Gong, Y. X. Duan, and T. Li, “Evidence for visually mediated copulation frequency in the scarab beetle Anomala corpulenta,” J. Insect Behav. 28, 175–182 (2015).
[Crossref]

Egri, A.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

Fallet, C.

Feller, K. D.

K. D. Feller, T. M. Jordan, D. Wilby, and N. W. Roberts, “Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage,” Phil. Trans. R. Soc. B 372:20160336 (2017).
[Crossref]

Fernández del Río, L.

L. Fernández del Río, An Investigation of the Polarization States of Light Reflected from Scarab Beetles of the Chrysina Genus (Linköping University, 2011).

Finlayson, E. D.

L. T. McDonald, E. D. Finlayson, B. D. Wilts, and P. Vukusic, “Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure,” J. R. Soc. Interface 7, 20160129 (2017).
[Crossref]

E. D. Finlayson, L. T. McDonald, and P. Vukusic, “Optically ambidextrous circularly polarized reflection from the chiral cuticle of the scarab beetle Chrysina resplendens,” J. R. Soc. Interface 14, 20170129 (2017).
[Crossref]

Foldyna, M.

Gábor, H.

R. Hegedüs, S. Győző, and H. Gábor, “Imaging polarimetry of the circularly polarizing cuticle of scarab beetles (Coleoptera: Rutelidae, Cetoniidae),” Vis. Res. 46, 2786–2797 (2006).
[Crossref]

Gagnon, Y. L.

Y. L. Gagnon, R. M. Templin, M. J. How, and N. J. Marshall, “Circularly polarized light as a communication signal in mantis shrimps,” Curr. Biol. 25, 3074–3078 (2015).
[Crossref]

Garcia-Caurel, E.

García-Caurel, E.

Garner, B. H.

M. R. Moore, M. L. Jameson, B. H. Garner, C. Audibert, A. B. Smith, and M. Seidel, “Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies,” ZooKeys 666, 1–349 (2017).
[Crossref]

Goldizen, A.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[Crossref]

Goldstein, D. H.

D. H. Goldstein, “Polarization properties of Scarabaeidae,” Appl. Opt. 45, 7944–7950 (2006).
[Crossref]

D. H. Goldstein, “Reflection properties of Scarabaeidae,” Proc. SPIE 5888, 58880T (2005).
[Crossref]

D. H. Goldstein and D. B. Chenault, “Spectropolarimetric reflectometer,” Opt. Eng. 41, 1013–1020 (2002).
[Crossref]

D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992).
[Crossref]

D. H. Goldstein and R. A. Chipman, “Error analysis of a Mueller matrix polarimeter,” J. Opt. Soc. Am. A 7, 693–7700 (1990).
[Crossref]

D. H. Goldstein, D. B. Chenault, and M. Owens, “Spectropolarimetric reflectometer,” U.S. patent6,618,145 (9September2003).

D. H. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2011).

Gong, Z.

J. Miao, Y. Wu, K. Li, Y. Jiang, Z. Gong, Y. X. Duan, and T. Li, “Evidence for visually mediated copulation frequency in the scarab beetle Anomala corpulenta,” J. Insect Behav. 28, 175–182 (2015).
[Crossref]

Gyozo, S.

R. Hegedüs, S. Győző, and H. Gábor, “Imaging polarimetry of the circularly polarizing cuticle of scarab beetles (Coleoptera: Rutelidae, Cetoniidae),” Vis. Res. 46, 2786–2797 (2006).
[Crossref]

Hall, J. R.

K. Kjernsmo, H. M. Whitney, N. E. Scott-Samuel, J. R. Hall, H. Knowles, L. Talas, and I. C. Cuthill, “Iridescence as camouflage,” Curr. Biol. 30, 551–555 (2020).
[Crossref]

Hawks, D. C.

D. C. Hawks, “Taxonomic and nomenclatural changes in Chrysina and a synonymic checklist of species (Scarabaeidae: Rutelinae),” Occ. Pap. Consortium Coleopterorum 4, 1–8 (2001).

Hegedüs, R.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

R. Hegedüs, S. Győző, and H. Gábor, “Imaging polarimetry of the circularly polarizing cuticle of scarab beetles (Coleoptera: Rutelidae, Cetoniidae),” Vis. Res. 46, 2786–2797 (2006).
[Crossref]

Hernández-Jiménez, M.

W. E. Vargas, E. Avendaño, M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, Á. G. Solís, and C. Barboza-Aguilar, “Photonic crystal characterization of the cuticles of Chrysina chrysargyrea and Chrysina optima jewel scarab beetles,” Biomimetics 3, 30 (2018).
[Crossref]

D. E. Azofeifa, M. Hernández-Jiménez, E. Libby, A. Solís, C. Barboza-Aguilar, and W. E. Vargas, “A quantitative assessment approach of feasible optical mechanisms contributing to structural color of golden-like Chrysina aurigans scarab beetles,” J. Quant. Spectrosc. Radiat. Transfer 160, 63–74 (2015).
[Crossref]

Hodgkinson, I.

Horváth, G.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

How, M. J.

Y. L. Gagnon, R. M. Templin, M. J. How, and N. J. Marshall, “Circularly polarized light as a communication signal in mantis shrimps,” Curr. Biol. 25, 3074–3078 (2015).
[Crossref]

Jameson, M. L.

M. R. Moore, M. L. Jameson, B. H. Garner, C. Audibert, A. B. Smith, and M. Seidel, “Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies,” ZooKeys 666, 1–349 (2017).
[Crossref]

Järrendahl, K.

A. Mendoza-Galván, K. Järrendahl, and H. Arwin, “Mueller matrix modeling of the architecture in the cuticle of the beetle Chrysina resplendens,” J. Vac. Sci. Technol. B 37, 062904 (2019).
[Crossref]

R. S. Magnusson, H. Arwin, E. García-Caurel, K. Järrendahl, and R. Ossikovski, “Sum regression decomposition of spectral and angle-resolved Mueller matrices from biological reflectors,” Appl. Opt. 55, 4060–4065 (2016).
[Crossref]

H. Arwin, R. Magnusson, E. Garcia-Caurel, C. Fallet, K. Järrendahl, M. Foldyna, A. De Martino, and R. Ossikovski, “Sum decomposition of Mueller-matrix images and spectra of beetle cuticles,” Opt. Express 23, 1951–1966 (2015).
[Crossref]

E. Muñoz-Pineda, K. Järrendahl, H. Arwin, and A. Mendoza-Galván, “Symmetries and relationships between elements of the Mueller matrix spectra of the cuticle of the beetle Cotinis mutabilis,” Thin Solid Films 571, 660–665 (2014).
[Crossref]

A. T. Berlind, B. D. Johs, and K. Järrendahl, “Cuticle structure of the scarab beetle Cetonia aurata analyzed by regression analysis of Mueller-matrix ellipsometric data,” Opt. Express 21, 22645–22656 (2013).
[Crossref]

H. Arwin, R. S. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Jiang, Y.

J. Miao, Y. Wu, K. Li, Y. Jiang, Z. Gong, Y. X. Duan, and T. Li, “Evidence for visually mediated copulation frequency in the scarab beetle Anomala corpulenta,” J. Insect Behav. 28, 175–182 (2015).
[Crossref]

Johs, B. D.

Jordan, T. M.

K. D. Feller, T. M. Jordan, D. Wilby, and N. W. Roberts, “Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage,” Phil. Trans. R. Soc. B 372:20160336 (2017).
[Crossref]

Jósvai, J.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

Kapitán, J.

P. Bouchal, J. Kapitán, M. Konečný, M. Zbončák, and Z. Bouchal, “Non-diffracting light in nature: anomalously reflected self-healing Bessel beams from jewel scarabs,” APL Photon. 4, 126102 (2019).
[Crossref]

Kertész, K.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

Kjernsmo, K.

K. Kjernsmo, H. M. Whitney, N. E. Scott-Samuel, J. R. Hall, H. Knowles, L. Talas, and I. C. Cuthill, “Iridescence as camouflage,” Curr. Biol. 30, 551–555 (2020).
[Crossref]

Kleinlogel, S.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[Crossref]

Knowles, H.

K. Kjernsmo, H. M. Whitney, N. E. Scott-Samuel, J. R. Hall, H. Knowles, L. Talas, and I. C. Cuthill, “Iridescence as camouflage,” Curr. Biol. 30, 551–555 (2020).
[Crossref]

Konecný, M.

P. Bouchal, J. Kapitán, M. Konečný, M. Zbončák, and Z. Bouchal, “Non-diffracting light in nature: anomalously reflected self-healing Bessel beams from jewel scarabs,” APL Photon. 4, 126102 (2019).
[Crossref]

Kriska, G.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

Landin, J.

H. Arwin, R. S. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Large, M. C. J.

A. R. Parker, D. R. McKenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

LeConte, J. L.

J. L. LeConte, “Descriptions of new coleoptera collected by Thos. H. Webb, M. D., in the years 1850–1851 and 52, while secretary to the U. S. and mexican boundary commission,” Proc. Acad. Nat. Sci. Philadelphia 7, 220–225 (1854).

Lenau, T.

T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells—a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mater. 10, 299–314 (2008).
[Crossref]

Li, K.

J. Miao, Y. Wu, K. Li, Y. Jiang, Z. Gong, Y. X. Duan, and T. Li, “Evidence for visually mediated copulation frequency in the scarab beetle Anomala corpulenta,” J. Insect Behav. 28, 175–182 (2015).
[Crossref]

Li, T.

J. Miao, Y. Wu, K. Li, Y. Jiang, Z. Gong, Y. X. Duan, and T. Li, “Evidence for visually mediated copulation frequency in the scarab beetle Anomala corpulenta,” J. Insect Behav. 28, 175–182 (2015).
[Crossref]

Libby, E.

W. E. Vargas, E. Avendaño, M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, Á. G. Solís, and C. Barboza-Aguilar, “Photonic crystal characterization of the cuticles of Chrysina chrysargyrea and Chrysina optima jewel scarab beetles,” Biomimetics 3, 30 (2018).
[Crossref]

D. E. Azofeifa, M. Hernández-Jiménez, E. Libby, A. Solís, C. Barboza-Aguilar, and W. E. Vargas, “A quantitative assessment approach of feasible optical mechanisms contributing to structural color of golden-like Chrysina aurigans scarab beetles,” J. Quant. Spectrosc. Radiat. Transfer 160, 63–74 (2015).
[Crossref]

Loeffler, B.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[Crossref]

Lowrey, S.

Magnusson, R.

Magnusson, R. S.

R. S. Magnusson, H. Arwin, E. García-Caurel, K. Järrendahl, and R. Ossikovski, “Sum regression decomposition of spectral and angle-resolved Mueller matrices from biological reflectors,” Appl. Opt. 55, 4060–4065 (2016).
[Crossref]

H. Arwin, R. S. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Marshall, J.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[Crossref]

Marshall, N. J.

Y. L. Gagnon, R. M. Templin, M. J. How, and N. J. Marshall, “Circularly polarized light as a communication signal in mantis shrimps,” Curr. Biol. 25, 3074–3078 (2015).
[Crossref]

McCall, M. W.

McDonald, L. T.

E. D. Finlayson, L. T. McDonald, and P. Vukusic, “Optically ambidextrous circularly polarized reflection from the chiral cuticle of the scarab beetle Chrysina resplendens,” J. R. Soc. Interface 14, 20170129 (2017).
[Crossref]

L. T. McDonald, E. D. Finlayson, B. D. Wilts, and P. Vukusic, “Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure,” J. R. Soc. Interface 7, 20160129 (2017).
[Crossref]

McKenzie, D. R.

A. R. Parker, D. R. McKenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

Mendoza-Galván, A.

A. Mendoza-Galván, K. Järrendahl, and H. Arwin, “Mueller matrix modeling of the architecture in the cuticle of the beetle Chrysina resplendens,” J. Vac. Sci. Technol. B 37, 062904 (2019).
[Crossref]

E. Muñoz-Pineda, K. Järrendahl, H. Arwin, and A. Mendoza-Galván, “Symmetries and relationships between elements of the Mueller matrix spectra of the cuticle of the beetle Cotinis mutabilis,” Thin Solid Films 571, 660–665 (2014).
[Crossref]

Miao, J.

J. Miao, Y. Wu, K. Li, Y. Jiang, Z. Gong, Y. X. Duan, and T. Li, “Evidence for visually mediated copulation frequency in the scarab beetle Anomala corpulenta,” J. Insect Behav. 28, 175–182 (2015).
[Crossref]

Michelson, A. A.

A. A. Michelson, “On metallic colouring in birds and insects,” Philos. Mag. 21(124), 554–567 (1911).
[Crossref]

Moore, M. R.

M. R. Moore, M. L. Jameson, B. H. Garner, C. Audibert, A. B. Smith, and M. Seidel, “Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies,” ZooKeys 666, 1–349 (2017).
[Crossref]

Muñoz-Pineda, E.

E. Muñoz-Pineda, K. Järrendahl, H. Arwin, and A. Mendoza-Galván, “Symmetries and relationships between elements of the Mueller matrix spectra of the cuticle of the beetle Cotinis mutabilis,” Thin Solid Films 571, 660–665 (2014).
[Crossref]

Neville, A. C.

A. C. Neville, “Metallic gold and silver colours in some insect cuticles,” J. Insect Physiol. 23, 1267–1274 (1977).
[Crossref]

A. C. Neville and S. Caveney, “Scarabeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. 44, 531–562 (1969).
[Crossref]

Ohaus, F.

F. Ohaus, “Plusiotis strasseni new sp,” Senckenbergiana 6, 185–186 (1924).

Ossikovski, R.

Owens, M.

D. H. Goldstein, D. B. Chenault, and M. Owens, “Spectropolarimetric reflectometer,” U.S. patent6,618,145 (9September2003).

Park, J. O.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[Crossref]

Parker, A.

Parker, A. R.

A. R. Parker, D. R. McKenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

Pye, J. D.

J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linn. Soc. 100, 585–596 (2010).
[Crossref]

Robacker, D. C.

D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” Am. Entom. 553, 224–230 (2007).
[Crossref]

Roberts, N. W.

K. D. Feller, T. M. Jordan, D. Wilby, and N. W. Roberts, “Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage,” Phil. Trans. R. Soc. B 372:20160336 (2017).
[Crossref]

Sallé, A.

A. Sallé, “Diagnose d’une nouvelle espèce de Pelidnota (P. chrysargyrea),” Ann. Soc. Entomol. Fr. 5, 362 (1874).

Scott-Samuel, N. E.

K. Kjernsmo, H. M. Whitney, N. E. Scott-Samuel, J. R. Hall, H. Knowles, L. Talas, and I. C. Cuthill, “Iridescence as camouflage,” Curr. Biol. 30, 551–555 (2020).
[Crossref]

Seago, A.

D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” Am. Entom. 553, 224–230 (2007).
[Crossref]

Seidel, M.

M. R. Moore, M. L. Jameson, B. H. Garner, C. Audibert, A. B. Smith, and M. Seidel, “Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies,” ZooKeys 666, 1–349 (2017).
[Crossref]

Sharma, V.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[Crossref]

Siddiqi, A.

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[Crossref]

Smith, A. B.

M. R. Moore, M. L. Jameson, B. H. Garner, C. Audibert, A. B. Smith, and M. Seidel, “Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies,” ZooKeys 666, 1–349 (2017).
[Crossref]

Solís, A.

D. E. Azofeifa, M. Hernández-Jiménez, E. Libby, A. Solís, C. Barboza-Aguilar, and W. E. Vargas, “A quantitative assessment approach of feasible optical mechanisms contributing to structural color of golden-like Chrysina aurigans scarab beetles,” J. Quant. Spectrosc. Radiat. Transfer 160, 63–74 (2015).
[Crossref]

Solís, Á. G.

W. E. Vargas, E. Avendaño, M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, Á. G. Solís, and C. Barboza-Aguilar, “Photonic crystal characterization of the cuticles of Chrysina chrysargyrea and Chrysina optima jewel scarab beetles,” Biomimetics 3, 30 (2018).
[Crossref]

Srinivasarao, M.

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[Crossref]

Talas, L.

K. Kjernsmo, H. M. Whitney, N. E. Scott-Samuel, J. R. Hall, H. Knowles, L. Talas, and I. C. Cuthill, “Iridescence as camouflage,” Curr. Biol. 30, 551–555 (2020).
[Crossref]

Templin, R. M.

Y. L. Gagnon, R. M. Templin, M. J. How, and N. J. Marshall, “Circularly polarized light as a communication signal in mantis shrimps,” Curr. Biol. 25, 3074–3078 (2015).
[Crossref]

Thomas, D. B.

D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” Am. Entom. 553, 224–230 (2007).
[Crossref]

Tóth, M.

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

Vargas, W. E.

W. E. Vargas, E. Avendaño, M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, Á. G. Solís, and C. Barboza-Aguilar, “Photonic crystal characterization of the cuticles of Chrysina chrysargyrea and Chrysina optima jewel scarab beetles,” Biomimetics 3, 30 (2018).
[Crossref]

D. E. Azofeifa, M. Hernández-Jiménez, E. Libby, A. Solís, C. Barboza-Aguilar, and W. E. Vargas, “A quantitative assessment approach of feasible optical mechanisms contributing to structural color of golden-like Chrysina aurigans scarab beetles,” J. Quant. Spectrosc. Radiat. Transfer 160, 63–74 (2015).
[Crossref]

Vukusic, P.

E. D. Finlayson, L. T. McDonald, and P. Vukusic, “Optically ambidextrous circularly polarized reflection from the chiral cuticle of the scarab beetle Chrysina resplendens,” J. R. Soc. Interface 14, 20170129 (2017).
[Crossref]

L. T. McDonald, E. D. Finlayson, B. D. Wilts, and P. Vukusic, “Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure,” J. R. Soc. Interface 7, 20160129 (2017).
[Crossref]

Whitney, H. M.

K. Kjernsmo, H. M. Whitney, N. E. Scott-Samuel, J. R. Hall, H. Knowles, L. Talas, and I. C. Cuthill, “Iridescence as camouflage,” Curr. Biol. 30, 551–555 (2020).
[Crossref]

Wilby, D.

K. D. Feller, T. M. Jordan, D. Wilby, and N. W. Roberts, “Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage,” Phil. Trans. R. Soc. B 372:20160336 (2017).
[Crossref]

Wilts, B. D.

L. T. McDonald, E. D. Finlayson, B. D. Wilts, and P. Vukusic, “Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure,” J. R. Soc. Interface 7, 20160129 (2017).
[Crossref]

Wu, Y.

J. Miao, Y. Wu, K. Li, Y. Jiang, Z. Gong, Y. X. Duan, and T. Li, “Evidence for visually mediated copulation frequency in the scarab beetle Anomala corpulenta,” J. Insect Behav. 28, 175–182 (2015).
[Crossref]

Zboncák, M.

P. Bouchal, J. Kapitán, M. Konečný, M. Zbončák, and Z. Bouchal, “Non-diffracting light in nature: anomalously reflected self-healing Bessel beams from jewel scarabs,” APL Photon. 4, 126102 (2019).
[Crossref]

Adv. Eng. Mater. (1)

T. Lenau and M. Barfoed, “Colours and metallic sheen in beetle shells—a biomimetic search for material structuring principles causing light interference,” Adv. Eng. Mater. 10, 299–314 (2008).
[Crossref]

Am. Entom. (1)

D. B. Thomas, A. Seago, and D. C. Robacker, “Reflections on golden scarabs,” Am. Entom. 553, 224–230 (2007).
[Crossref]

Am. Nat. (1)

P. C. Brady and M. E. Cummings, “Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa,” Am. Nat. 175, 614–620 (2010).
[Crossref]

Ann. Soc. Entomol. Fr. (1)

A. Sallé, “Diagnose d’une nouvelle espèce de Pelidnota (P. chrysargyrea),” Ann. Soc. Entomol. Fr. 5, 362 (1874).

APL Photon. (1)

P. Bouchal, J. Kapitán, M. Konečný, M. Zbončák, and Z. Bouchal, “Non-diffracting light in nature: anomalously reflected self-healing Bessel beams from jewel scarabs,” APL Photon. 4, 126102 (2019).
[Crossref]

Appl. Opt. (4)

Biol. J. Linn. Soc. (1)

J. D. Pye, “The distribution of circularly polarized light reflection in the Scarabaeoidea (Coleoptera),” Biol. J. Linn. Soc. 100, 585–596 (2010).
[Crossref]

Biol. Rev. (1)

A. C. Neville and S. Caveney, “Scarabeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. 44, 531–562 (1969).
[Crossref]

Biomimetics (1)

W. E. Vargas, E. Avendaño, M. Hernández-Jiménez, D. E. Azofeifa, E. Libby, Á. G. Solís, and C. Barboza-Aguilar, “Photonic crystal characterization of the cuticles of Chrysina chrysargyrea and Chrysina optima jewel scarab beetles,” Biomimetics 3, 30 (2018).
[Crossref]

Curr. Biol. (3)

Y. L. Gagnon, R. M. Templin, M. J. How, and N. J. Marshall, “Circularly polarized light as a communication signal in mantis shrimps,” Curr. Biol. 25, 3074–3078 (2015).
[Crossref]

T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008).
[Crossref]

K. Kjernsmo, H. M. Whitney, N. E. Scott-Samuel, J. R. Hall, H. Knowles, L. Talas, and I. C. Cuthill, “Iridescence as camouflage,” Curr. Biol. 30, 551–555 (2020).
[Crossref]

J. Exp. Biol. (1)

A. R. Parker, D. R. McKenzie, and M. C. J. Large, “Multilayer reflectors in animals using green and gold beetles as contrasting examples,” J. Exp. Biol. 201, 1307–1313 (1998).

J. Insect Behav. (1)

J. Miao, Y. Wu, K. Li, Y. Jiang, Z. Gong, Y. X. Duan, and T. Li, “Evidence for visually mediated copulation frequency in the scarab beetle Anomala corpulenta,” J. Insect Behav. 28, 175–182 (2015).
[Crossref]

J. Insect Physiol. (1)

A. C. Neville, “Metallic gold and silver colours in some insect cuticles,” J. Insect Physiol. 23, 1267–1274 (1977).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

D. E. Azofeifa, M. Hernández-Jiménez, E. Libby, A. Solís, C. Barboza-Aguilar, and W. E. Vargas, “A quantitative assessment approach of feasible optical mechanisms contributing to structural color of golden-like Chrysina aurigans scarab beetles,” J. Quant. Spectrosc. Radiat. Transfer 160, 63–74 (2015).
[Crossref]

J. R. Soc. Interface (2)

L. T. McDonald, E. D. Finlayson, B. D. Wilts, and P. Vukusic, “Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure,” J. R. Soc. Interface 7, 20160129 (2017).
[Crossref]

E. D. Finlayson, L. T. McDonald, and P. Vukusic, “Optically ambidextrous circularly polarized reflection from the chiral cuticle of the scarab beetle Chrysina resplendens,” J. R. Soc. Interface 14, 20170129 (2017).
[Crossref]

J. Vac. Sci. Technol. B (1)

A. Mendoza-Galván, K. Järrendahl, and H. Arwin, “Mueller matrix modeling of the architecture in the cuticle of the beetle Chrysina resplendens,” J. Vac. Sci. Technol. B 37, 062904 (2019).
[Crossref]

Occ. Pap. Consortium Coleopterorum (1)

D. C. Hawks, “Taxonomic and nomenclatural changes in Chrysina and a synonymic checklist of species (Scarabaeidae: Rutelinae),” Occ. Pap. Consortium Coleopterorum 4, 1–8 (2001).

Opt. Eng. (1)

D. H. Goldstein and D. B. Chenault, “Spectropolarimetric reflectometer,” Opt. Eng. 41, 1013–1020 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Phil. Trans. R. Soc. B (1)

K. D. Feller, T. M. Jordan, D. Wilby, and N. W. Roberts, “Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage,” Phil. Trans. R. Soc. B 372:20160336 (2017).
[Crossref]

Philos. Mag. (2)

A. A. Michelson, “On metallic colouring in birds and insects,” Philos. Mag. 21(124), 554–567 (1911).
[Crossref]

H. Arwin, R. S. Magnusson, J. Landin, and K. Järrendahl, “Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson,” Philos. Mag. 92(12), 1583–1599 (2012).
[Crossref]

Physiol. Behav. (1)

M. Blahó, A. Egri, R. Hegedüs, J. Jósvai, M. Tóth, K. Kertész, L. Biro, G. Kriska, and G. Horváth, “No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle,” Physiol. Behav. 105, 1067–1075 (2012).
[Crossref]

Proc. Acad. Nat. Sci. Philadelphia (1)

J. L. LeConte, “Descriptions of new coleoptera collected by Thos. H. Webb, M. D., in the years 1850–1851 and 52, while secretary to the U. S. and mexican boundary commission,” Proc. Acad. Nat. Sci. Philadelphia 7, 220–225 (1854).

Proc. R. Soc. London B (1)

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London B 178, 205–225 (1971).
[Crossref]

Proc. SPIE (1)

D. H. Goldstein, “Reflection properties of Scarabaeidae,” Proc. SPIE 5888, 58880T (2005).
[Crossref]

Science (1)

V. Sharma, M. Crne, J. O. Park, and M. Srinivasarao, “Structural origin of circularly polarized iridescence in jeweled beetles,” Science 325, 449–451 (2009).
[Crossref]

Senckenbergiana (1)

F. Ohaus, “Plusiotis strasseni new sp,” Senckenbergiana 6, 185–186 (1924).

Thin Solid Films (1)

E. Muñoz-Pineda, K. Järrendahl, H. Arwin, and A. Mendoza-Galván, “Symmetries and relationships between elements of the Mueller matrix spectra of the cuticle of the beetle Cotinis mutabilis,” Thin Solid Films 571, 660–665 (2014).
[Crossref]

Vis. Res. (1)

R. Hegedüs, S. Győző, and H. Gábor, “Imaging polarimetry of the circularly polarizing cuticle of scarab beetles (Coleoptera: Rutelidae, Cetoniidae),” Vis. Res. 46, 2786–2797 (2006).
[Crossref]

ZooKeys (1)

M. R. Moore, M. L. Jameson, B. H. Garner, C. Audibert, A. B. Smith, and M. Seidel, “Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies,” ZooKeys 666, 1–349 (2017).
[Crossref]

Other (5)

D. H. Goldstein, D. B. Chenault, and M. Owens, “Spectropolarimetric reflectometer,” U.S. patent6,618,145 (9September2003).

H. W. Bates, “Insecta. Coleoptera,” in Part 2. Pectinicornia and Lamellicornia, O. Salvin and G. F. du Cane, eds. (R. H. Porter, 1988), Vol. II, pp. 1–432.

A. Boucard, “Monographic list of the Coleoptera of the genus Plusiotis of America, north of Panama, with descriptions of several new species,” Proc. Zool. Soc. Lond.117–125 (1875).

D. H. Goldstein, Polarized Light, 3rd ed. (CRC Press, 2011).

L. Fernández del Río, An Investigation of the Polarization States of Light Reflected from Scarab Beetles of the Chrysina Genus (Linköping University, 2011).

Supplementary Material (1)

NameDescription
Supplement 1       Supplemental Document

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Spectropolarimetric reflectance measurement configuration. FTS is the Fourier transform spectrometer, PSG is the polarization state generator, BS is the beam splitter, and PSA is the polarization state analyzer. The red arrows represent the light beam (that is larger than the beetle) hitting the dorsal curved surface of the beetle sample at normal incidence in this lateral view.
Fig. 2.
Fig. 2. Photographs of the five scarab species. The top row shows the beetles with no polarization filter. The bottom row shows the beetles through a RHCP filter. From left to right: Chrysina resplendens, Chrysina argenteola, Chrysina chrysargyrea, Chrysina batesi, and Chrysina strasseni. Scale bar is 10 mm.
Fig. 3.
Fig. 3. Normalized reflectance spectra for the five golden beetle species at normal incidence.
Fig. 4.
Fig. 4. Mueller matrix spectra for C. argenteola at normal incidence.
Fig. 5.
Fig. 5. Polarization metrics calculated from the Mueller matrices for the five species of beetles. Clockwise from top left: the degree of circular polarization (DoCP), ellipticity, degree of linear polarization (DoLP), and degree of polarization (DoP).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S r = M S i ,
M = ( m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 ) ,
S i = ( 1 0 0 0 ) ,
S r = ( m 11 m 21 m 31 m 41 ) .
D e g r e e o f C i r c u l a r P o l a r i z a t i o n , o r D o C P = m 41 ,
D e g r e e o f P o l a r i z a t i o n , o r D o P = m 21 2 + m 31 2 + m 41 2 ,
D e g r e e o f L i n e a r P o l a r i z a t i o n , o r D o L P = m 21 2 + m 31 2 .
D o P 2 = D o L P 2 + D o C P 2 .
e = tan ( 1 2 sin 1 ( m 41 m 21 2 + m 31 2 + m 41 2 ) ) .
( 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 ) .

Metrics

Select as filters


Select Topics Cancel
© Copyright 2023 | Optica Publishing Group. All Rights Reserved