Abstract
It is well known that Bessel beams and the other families of propagation-invariant optical fields have the property of self-healing when obstructed by an opaque object. Here it is shown that there exists another kind of field distribution that can have an analog property. In particular, we demonstrate that a class of caustic wave fields, whose transverse intensity patterns change on propagation, when perturbed by an opaque object can reappear at a further plane as if they had not been obstructed. The physics of the phenomenon is fully explained and shown to be related to that of self-healing propagation invariant optical fields.
© 2007 Optical Society of America
Full Article |
PDF Article
More Like This
Unraveling beam self-healing
Andrea Aiello, Girish S. Agarwal, Martin Paúr, Bohumil Stoklasa, Zdeněk Hradil, Jaroslav Řeháček, Pablo de la Hoz, Gerd Leuchs, and Luis L. Sánchez-Soto
Opt. Express 25(16) 19147-19157 (2017)
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (7)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (8)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription