Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Sequences of the ranged amplitudes as a universal method for fast noninvasive characterization of SPAD dark counts

Not Accessible

Your library or personal account may give you access

Abstract

Single-photon detectors based on avalanche photodiodes (SPADs) are key elements of many modern highly sensitive optical systems. One of the bottlenecks of such detectors is an afterpulsing effect, which limits detection rate and requires an optimal hold-off time. In this paper, we propose a novel approach for statistical analysis of SPAD dark counts, and we demonstrate its usefulness for the search of the experimental condition where the afterpulsing effect can be strongly eliminated. This approach exploits a sequence of ranked time intervals between the dark counts and does not contain a complex mathematical analysis of the experimental data. We show that the approach can be efficiently applied for a small number of the dark counts, and it seems to be very beneficial for practical fast characterization of SPAD devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Self-triggered method for characterization of single-photon detectors

Thiago Ferreira da Silva
Appl. Opt. 55(7) 1565-1570 (2016)

Design of wafer-bonded structures for near room temperature Geiger-mode operation of germanium on silicon single-photon avalanche photodiode

Shaoying Ke, Shaoming Lin, Danfeng Mao, Yujie Ye, Xiaoli Ji, Wei Huang, Cheng Li, and Songyan Chen
Appl. Opt. 56(16) 4646-4653 (2017)

Dark current and single photon detection by 1550 nm avalanche photodiodes: dead time corrected probability distributions and entropy rates

Nicole Menkart, Joseph D. Hart, Thomas E. Murphy, and Rajarshi Roy
Opt. Express 30(22) 39431-39444 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved