Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

3D reconstruction of objects with occlusion and surface reflection using a dual monocular structured light system

Not Accessible

Your library or personal account may give you access

Abstract

Three-dimensional (3D) vision plays an important role in industrial vision, where occlusion and reflection have made it challenging to reconstruct the entire application scene. In this paper, we present a novel 3D reconstruction framework to solve the occlusion and reflection reconstruction issues in complex scenes. A dual monocular structured light system is adopted to obtain the point cloud from different viewing angles to fill the missing points in the complex scenes. To enhance the efficiency of point cloud fusion, we create a decision map that is able to avoid the reconstruction of repeating regions of the left and right system. Additionally, a compensation method based on the decision map is proposed for reducing the reconstruction error of the dual monocular system in the fusion area. Gray-code and phase-shifting patterns are utilized to encode the complex scenes, while the phase-jumping problem at the phase boundary is avoided by designing a unique compensation function. Various experiments including accuracy evaluation, comparison with the traditional fusion algorithm, and the reconstruction of real complex scenes are conducted to validate the method’s accuracy and the robustness to the shiny surface and occlusion reconstruction problem.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
3D shape measurement of objects with high dynamic range of surface reflectivity

Gui-hua Liu, Xian-Yong Liu, and Quan-Yuan Feng
Appl. Opt. 50(23) 4557-4565 (2011)

3D reconstruction of structured light fields based on point cloud adaptive repair for highly reflective surfaces

Wei Feng, Tong Qu, Junhui Gao, Henghui Wang, Xiuhua Li, Zhongsheng Zhai, and Daxing Zhao
Appl. Opt. 60(24) 7086-7093 (2021)

3D surface reconstruction of transparent objects using laser scanning with a four-layers refinement process

Kejing He, Congying Sui, Tianyu Huang, Yiyun Zhang, Weiguo Zhou, Xing Chen, and Yun-Hui Liu
Opt. Express 30(6) 8571-8591 (2022)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (21)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics

Select as filters


Select Topics Cancel
© Copyright 2022 | Optica Publishing Group. All Rights Reserved