Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Finding point method and re-optimized method for the brightness temperature simulation from Fengyun 4A AGRI in infrared channels

Not Accessible

Your library or personal account may give you access

Abstract

The correlated $k$-distribution (CKD) is a fast radiative transfer model and is often used in atmospheric absorption simulation. In the paper, we apply two automatic CKD methods to satellite brightness temperature simulations from the Fengyun 4A Advanced Geostationary Radiation Imager (AGRI) in infrared channels, namely, the finding point method (FPM) and the re-optimized method (ROM). In the calculation, we used Radiative Transfer for the Television Observation Satellite Operational Vertical Sounder (RTTOV) as the comparison, and we use line-by-line (LBL) integration as the reference. Compared with LBL in the brightness temperature simulation of real profiles, the errors of FPM in 7.1 µm and 13.5 µm channels are 0.22 K, $- 0.13 \;{\rm K}$ for mean error and 0.3128 K, 0.2184 K for root mean square error (RMSE), respectively, which are larger than that of RTTOV, with 0.16 K, 0.02 K, 0.2144 K, and 0.1226 K, respectively. In the other channels, the results show that of ROM has the highest accuracy and RTTOV has the lowest accuracy. In general, FPM and ROM can achieve very good accuracy in satellite infrared remote sensing.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Efficient radiative transfer model for thermal infrared brightness temperature simulation in cloudy atmospheres

Wenwen Li, Feng Zhang, Yi-Ning Shi, Hironobu Iwabuchi, Mingwei Zhu, Jiangnan Li, Wei Han, Husi Letu, and Hiroshi Ishimoto
Opt. Express 28(18) 25730-25749 (2020)

Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept

Xu Liu, William L. Smith, Daniel K. Zhou, and Allen Larar
Appl. Opt. 45(1) 201-209 (2006)

Sensor-based clear and cloud radiance calculations in the community radiative transfer model

Quanhua Liu, Y. Xue, and C. Li
Appl. Opt. 52(20) 4981-4990 (2013)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.