Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Temperature-compensated high strain measurement based on a Fabry–Perot interferometer with the virtual-assisted Vernier effect

Not Accessible

Your library or personal account may give you access

Abstract

A highly sensitive optical fiber Fabry–Perot interferometer (FPI) for strain measurement with temperature compensation is proposed. Instead of using another actual reference interferometer, a virtual FPI is constructed to superpose with the sensing FPI to form the Vernier effect. The fundamental and the first-order harmonic Vernier effect are generated to increase the sensitivity by adjusting the parameter of the virtual FPI. In order to separate the strain from the environment temperature, an FBG is cascaded to distinguish the applied temperature. Experimental results demonstrate that, with the help of the fundamental Vernier effect, the sensitivity and temperature of the FPI increases from 1.05 pm/°C to 10.63 pm/°C in the temperature range of 40-120°C, and the sensitivity of strain increases from 2.635 pm/µ$\unicode{x03B5}$ to 33.11 pm/µ$\unicode{x03B5}$ in the strain range of 0-400 µ$\unicode{x03B5}$. In order to access the tracking points more easily and further enhance the sensitivities, the first-order harmonic Vernier effect is generated by modifying the virtual FPI. Results show that the temperature and strain sensitivities are 21.25 pm/°C and 62.25 pm/µ$\unicode{x03B5}$, respectively. In addition, with the help of the FBG, the strain can be separated from the temperature by solving the cross-sensitivity matrix.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Highly sensitive temperature and strain sensor based on an antiresonant hollow core fiber probe with the Vernier effect

Xiaonan Zhao, Xuqiang Wu, Shengquan Mu, Cheng Zuo, Jinhui Shi, Dong Guang, Benli Yu, Yangzhou Liu, Jihao Zhang, and Xingyu Liu
Appl. Opt. 61(27) 8133-8138 (2022)

Temperature and strain simultaneous sensing measurement based on an all-fiber Mach-Zehnder interferometer and fiber Bragg grating

Junjie Zhu, Wei He, Shaode Li, Zhihan Li, and Lianqing Zhu
Appl. Opt. 62(25) 6661-6671 (2023)

High-precision temperature-compensated fiber Bragg grating axial strain sensing system based on a dual-loop optoelectronic oscillator with the enhanced Vernier effect

Lingge Gao, Yiping Wang, Xiaozhong Tian, Yunhao Xiao, Qiang Liu, and Dan Zhu
Appl. Opt. 62(19) 5317-5324 (2023)

Data availability

Data underlying the results presented in this paper are available from the corresponding author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.