Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling the atmospheric refractive index structure parameter using macrometeorological observations

Not Accessible

Your library or personal account may give you access

Abstract

The dynamic fluctuations in the atmospheric refractive index, commonly referred to as optical turbulence, cause phase distortions of the electromagnetic waves propagating through the atmosphere. The consequent scintillations have large implications for free-space optical communication, laser remote sensing, and directed energy applications. The refractive index structure parameter ($C_n^2$), quantifying the strength of these fluctuations, is usually estimated using high-frequency micrometeorological measurements, employing sonic anemometer-thermometers or scintillometers. Despite providing highly accurate information, these systems are immensely complex and costly, especially for frequent field applications and remote locations. In this study, we have developed an empirical multinomial model for estimating $C_n^2$ using three-year macrometeorological data and validated it against collocated and concurrent micrometeorological measurements, from a tropical semi-arid location. This simpler model would be handy for applications in remote locations having weather station measurements alone.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Atmospheric optical turbulence over land in middle east coastal environments: prediction modeling and measurements

Sergey Bendersky, Norman S. Kopeika, and Natan Blaunstein
Appl. Opt. 43(20) 4070-4079 (2004)

Reliable model to estimate the profile of the refractive index structure parameter (Cn2) and integrated astroclimatic parameters in the atmosphere

Su Wu, Xiaoqing Wu, Changdong Su, Qike Yang, Jiangyue Xu, Tao Luo, Chan Huang, and Chun Qing
Opt. Express 29(8) 12454-12470 (2021)

Supplementary Material (1)

NameDescription
Supplement 1       Supplementary Document.

Data availability

Data presented in this paper may be available upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.