Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multiple Scattering Calculations for Technology

Not Accessible

Your library or personal account may give you access

Abstract

A many-flux (discrete ordinate) radiative transfer calculation procedure is described with the goal of making the mathematics easy to learn and use. The major approximation is the neglect of polarization. Emission within the scattering medium is not included, and the formulas are restricted to a scattering medium bounded by parallel planes. The boundary conditions allow for a variety of kinds of illumination, and the surface reflection coefficients at the boundaries of the scattering medium are accurately determined. A comparison is made with the two-flux (Kubelka-Munk) and four-flux calculation methods, and this leads to empirical expressions for the scattering and absorption coefficients in these simple theories, which make them give nearly the same results as exact theories. These empirical expressions provide a very simple method for estimating the absolute reflectance and transmittance of turbid media and greatly increase the utility of the two-flux and four-flux calculation methods. The two-flux equations give excellent results provided the absorption is small compared to scattering and the optical thickness is greater than 5. A comparison with experimental data taken with collimated illumination shows that the four-flux equations give good results at any optical thickness even if the absorption is strong.

© 1971 Optical Society of America

Full Article  |  PDF Article
More Like This
New and fast calculation for incoherent multiple scattering

Mady Elias and Georges Elias
J. Opt. Soc. Am. A 19(5) 894-901 (2002)

Multiple Scattering Calculation of the Middle Ultraviolet Reaching the Ground

E. P. Shettle and A. E. S. Green
Appl. Opt. 13(7) 1567-1581 (1974)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (91)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.