Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Turbulence Effects on Thermal Blooming

Not Accessible

Your library or personal account may give you access

Abstract

Theoretical and experimental studies have been carried out to determine the importance of mechanical turbulence, i.e., velocity fluctuations, on the propagation of high power cw CO2 laser radiation in the atmosphere. The experimental results were obtained using artificially generated turbulence and show, in agreement with theory based on a diffusion model, that the turbulence tends to replace the asymmetric bending, focusing, and spreading by the mean wind with a symmetric blooming. For sufficiently strong velocity fluctuations, say, greater than two to three times the mean velocity, the turbulence can reduce thermal blooming effects and increase the beam irradiance. Smaller turbulence levels, however, may actually result in decreasing the beam irradiance somewhat. From these results and estimates of the properties of turbulent diffusion in the atmosphere it appears that under typical conditions the mechanical turbulence will not significantly reduce the wind-dominated thermal distortion effects.

© 1973 Optical Society of America

Full Article  |  PDF Article
More Like This
Index of refraction turbulence effects on thermal blooming in laboratory experiments

R. S. Rohde and R. G. Buser
Appl. Opt. 18(5) 698-704 (1979)

Perturbation growth by thermal blooming in turbulence

T. J. Karr, J. R. Morris, D. H. Chambers, J. A. Viecelli, and P. G. Cramer
J. Opt. Soc. Am. B 7(6) 1103-1124 (1990)

Kinetic Model for Thermal Blooming in the Atmosphere

H. E. Bass and H.-J. Bauer
Appl. Opt. 12(7) 1506-1510 (1973)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.