Abstract
Planar optical waveguides consisting of thin dielectric films with metal cladding have been investigated theoretically and experimentally. A computer program was devised to provide the phase and attenuation constants and wavefunctions for TE and TM modes in symmetric and asymmetric guides. Approximate expressions suitable for slide-rule calculation were also derived. Numerical results and illustrations are given for films of photoresist with Al, Ag, and Au cladding. Direct measurements of the attenuation and phase constants at 0.633 μm of numerous experimental waveguides are in reasonable agreement with theory. Attenuations <1 dB/cm, which is sufficiently small for application in devices, were measured. Calculated wavefunctions illustrate the mismatch of modes at transitions between unclad and metal-clad waveguides. Experimentally, we find substantial losses at such abrupt junctions. They can be overcome by simple tapered transitions.
© 1974 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (11)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (40)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription