Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Inversion techniques for determining the droplet size distribution in clouds: numerical examination

Not Accessible

Your library or personal account may give you access

Abstract

The Phillips-Twomey and Backus-Gilbert inversion techniques are applied to determine the size distribution of water droplets in clouds from light scattering data at backward angles. The data are generated numerically from the Mie scattering functions and an assumed cloud model. The size distribution is recovered from these data using the two inversion techniques and is compared with the assumed model. It is found that the Phillips-Twomey technique gives better agreement between the assumed and recovered size distributions than the Backus-Gilbert technique. Also, it is more stable to random errors artificially introduced into the scattering data.

© 1976 Optical Society of America

Full Article  |  PDF Article
More Like This
Simple inversion technique to obtain cloud droplet size parameters using solar aureole data

Ting-i Wang, G. M. Lerfald, and V. E. Derr
Appl. Opt. 20(9) 1511-1515 (1981)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.