Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Color of the ocean

Not Accessible

Your library or personal account may give you access

Abstract

The color of the ocean is calculated from a model that realistically takes into account the various types of scattering and absorption events that occur in both the atmosphere and ocean. Solar photons are followed through the atmosphere and into the ocean by a Monte Carlo technique. The reflection and refraction at the ocean surface are included in the calculation. The upward and downward flux is calculated at several different heights in the atmosphere, at thirteen different wavelengths from 0.4 μm to 0.7 μm. These results are compared with two approximate theories: (1) one-dimensional; (2) single scattering. The first of these theories gives results which are accurate within 10% in most cases and are easy to calculate. The chromaticity coordinates as well as the dominant wavelength and purity of the color are calculated from the Monte Carlo results for the variation of upward flux with wavelength. The ocean color near the horizon is almost entirely determined by the color of the sky reflected by the ocean surface. The upwelling light from the ocean can be observed near the nadir if precautions are taken to exclude as much light as possible reflected from the ocean surface. The color of this upwelling light from the ocean contains much information about the hydrosol, chlorophyll, and yellow substance amounts in the ocean water. The model calculations show how the ocean color changes from a deep blue of high purity for relatively pure water to a greenish blue and then to green of low purity as the cholorphyll and yellow substance amounts increase. Further increases in these substances cause the color to change to yellow green of a higher purity. A large increase in the hydro-sol amount usually causes a marked decrease in the purity of the color.

© 1978 Optical Society of America

Full Article  |  PDF Article
More Like This
Radiance distribution over a ruffled sea: contributions from glitter, sky, and ocean

Gilbert N. Plass, George W. Kattawar, and John A. Guinn
Appl. Opt. 15(12) 3161-3165 (1976)

Ocean Color Spectrum Calculations

W. R. McCluney
Appl. Opt. 13(10) 2422-2429 (1974)

Radiative transfer in an atmosphere–ocean system: an azimuthally dependent matrix-operator approach

Juergen Fischer and Hartmut Grassl
Appl. Opt. 23(7) 1032-1039 (1984)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.