Abstract
Accurate determination of photodissociation rates in the troposphere and stratosphere in the 280–800-nm wavelength range requires calculation of the effects of anisotropic multiple scattering, pure absorption, and ground reflection on the solar flux incident at the top of the atmosphere. Past attempts to model these effects have led to approximate, sometimes time-consuming, models whose reliability is unknown. A general algorithm has been developed which includes (1) Rayleigh and Mie scattering by molecules and aerosols, (2) ground reflectivity, and (3) pure absorption by trace constituents such as ozone. Selected comparisons with existing approximate calculations are discussed, and a region of validity in wavelength and optical depth for isotropic scattering is presented.
© 1979 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (5)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (10)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription