Abstract
A theoretical and experimental study of the backscattering characteristics of a picosecond pulse scattered from a dense diffusing medium is presented. The theory uses a diffusion solution to the time-dependent equation of radiative transfer and the formulation of a picosecond range-gating technique. The experimental system consists of a high-power laser range-gating system, based on a picosecond Kerr-effect shutter. The results of experiments carried out on aqueous solutions of latex microspheres agree well with the theoretical calculations, not only in the pulse shape but in the relative magnitudes of the pulse height for different particle sizes and concentrations.
© 1979 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (7)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (15)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription