Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rotational nonequilibrium mechanisms in pulsed H2 + F2 chain reaction lasers. 2: Effect of VR energy exchange

Not Accessible

Your library or personal account may give you access

Abstract

The occurrence of pure rotational-to-rotational lasing from high J levels suggests that present rotational nonequilibrium mechanisms are inadequate to explain all lasing behavior of the HF laser. A possible mechanism for explaining this behavior is vibrational-to-rotational energy transfer. The usual assumption that vibrational relaxation occurs with rotational levels at equilibrium at the translational temperature is replaced with a near resonant multiquanta VR process that results in the formation of highly excited rotational states. Computer simulations incorporating VR relaxation predicted significant occurrence of rotational lasing. A simpler model that produced rotational nonequilibrium from pumping and P-branch lasing did not exhibit rotational lasing. Rotational lasing did not decrease energy available to P-branch lasing and produced effects resembling an increase in rotational relaxation rates. Rotational lasing is very sensitive to kinetics for both VR energy exchange and rotational relaxation.

© 1980 Optical Society of America

Full Article  |  PDF Article
More Like This
Effect of vibrational and rotational relaxation mechanisms in pulsed H2 + F2 lasers

R. C. Brown and R. L. Kerber
Appl. Opt. 23(13) 2078-2087 (1984)

Detailed characteristics of a pulsed H2 + F2 laser. 2: Theory

Paul E. Sojka and Ronald L. Kerber
Appl. Opt. 25(1) 76-85 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (8)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved