Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Determination of a spacecraft attitude using a ground-based laser

Not Accessible

Your library or personal account may give you access

Abstract

Experiments for determining an element of attitude are analyzed and discussed to support a method of three-axes attitude determination of spacecraft using a ground-based laser. In this method, the third element, i.e., the angle around an axis connecting a given spacecraft to another station, is determined by means of the rotatory polarization of laser light. The accuracy of the element determination has been investigated in terms of the signal-to-noise ratio of laser light detection and the scintillation due to atmospheric turbulence. The results indicate that the accuracy is inversely proportional to the voltage signal-to-noise ratio (VSNR). The limit of accuracy is set by the choice of equipment. This limit is <0.1° and is applicable for free space. When atmospheric transmission is included one must also consider the effect of scintillation. The relation between angular accuracy and the magnitude of scintillation is approximately linear in the region where the log-intensity fluctuation is smaller than ∼0.25. Experiments suggest that accuracy <0.5° over a 10-sec period (τ) would be obtained for laser transmission from earth to space given a VSNR higher than 100 and provided transmitting elevation is not too small. For other periods the value is inversely proportional to the square root of τ.

© 1982 Optical Society of America

Full Article  |  PDF Article
More Like This
Earth-to-space laser beam transmission for spacecraft attitude measurement

T. Aruga, K. Araki, T. Igarashi, F. Imai, Y. Yamamoto, and H. Sakagami
Appl. Opt. 23(1) 143-147 (1984)

Determination of vertical ozone distributions by spacecraft measurements using a limb-scan technique

Tadashi Aruga and Donald F. Heath
Appl. Opt. 21(16) 3047-3054 (1982)

GPS-aided method for platform attitude determination based on target images

Teng Xu, Lijun Xu, Xiangrui Tian, and Xiaolu Li
Appl. Opt. 56(8) 2378-2387 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.