Abstract
A methodology for investigating the variation of particle size distributions retrieved from constrained linear inversion of optical scattering data is presented. By plotting the expected inversion error vs angular scanning parameters (for typical size distribution vectors) one can determine sets of optimum angles based on a minimum error criteria at each particle size. An expression for the expected inversion error at each radius knot is derived. In addition a formulation for the Fredholm quadrature matrix in terms of Legendre coefficients and polynomials is introduced. This method of computation is advantageous when a large number of angles are to be investigated. The derived results are applied to the special case of a Junge Continental Aerosol.
© 1982 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Figures (2)
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Tables (2)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription
Equations (28)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access Optica Member Subscription