Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Steady-state CO2 laser model

Not Accessible

Your library or personal account may give you access

Abstract

A steady-state CO2 laser model is reported which can be used to predict and evaluate the performance of cw slow-flow and no-flow CO2 lasers. Traditional CO2 laser models require the solution of several simultaneous differential equations and can be used to model pulsed and fast-flow lasers in addition to cw and slow-flow devices. The model reported here is computationally simpler, requiring only a routine to solve one equation in one unknown, but is only useful for lasers which operate in the steady state.

© 1984 Optical Society of America

Full Article  |  PDF Article
More Like This
Tunable mode and line selection by injection in a TEA CO2 laser

Robert T. Menzies, Pierre H. Flamant, Michael J. Kavaya, and Eva N. Kuiper
Appl. Opt. 23(21) 3854-3861 (1984)

Quasi-cw 20-W tunable 1-sec pulse CO2 laser for optical pumping

L. E. Sharp and H. J. Barkley
Appl. Opt. 23(9) 1395-1398 (1984)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved