Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Particle analysis using forward scattering data

Not Accessible

Your library or personal account may give you access

Abstract

A novel approach to the inversion of optical scattering data is proposed and investigated. The proposed technique uses only forward scattering data as opposed to the previous research where angle scattering was used. Our method does not use scattering attenuation; in fact, only relative values of the measured signals are important in the suggested technique. Nevertheless, both the scattering coefficient and the scattering particle size may be effectively estimated. The proposed method relies on the fact that, as coherent light travels through a random scattering medium, its coherence deteriorates. The degree of coherence degradation may be described in terms of the mutual intensity function (MIF). The shape of the MIF depends on the scattering particle size and on the scattering coefficient. If a coherent receiver is used to detect forward scattered radiation, its output signal depends on the receiver diameter and on the MIF. Dependence of the receiver output signal on the receiver diameter carries information about the MIF and therefore about the scattering particle size and the scattering coefficient. This information may be extracted by means of the techniques suggested in this paper. Several possible realizations of the proposed device are discussed and analyzed. The results of our study imply that the suggested method can be conveniently implemented. For example, if the technique is used to measure a path-averaged raindrop size, the power needed at the receiver is <1 μW, the propagation path should be of the order of 1 km, and the measurement time required may be of the order of 10 sec. The data processing required is also relatively straightforward and may be handled by a microprocessor. The analysis was performed under the assumption that all the scattering particles have the same size. However, it was also shown that the suggested technique may be generalized to handle an arbitrary large number of groups of scattering particle having distinctly different sizes. Further generalization of the proposed technique to the case of continuous particle size distributions is described in a subsequent paper ( Appl. Opt. 23, 455 ( 1984).

© 1984 Optical Society of America

Full Article  |  PDF Article
More Like This
Estimation of particle size distributions from forward scattering data

Leonid G. Kazovsky
Appl. Opt. 23(3) 455-464 (1984)

Multiparametric particle-size-distribution measurement using yield-signature analysis

Leonid G. Kazovsky
J. Opt. Soc. Am. A 1(12) 1188-1196 (1984)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved