Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing

Not Accessible

Your library or personal account may give you access

Abstract

Advantages and disadvantages of modern discrete-ordinates finite-element methods for the solution of radiative transfer problems in meteorology, climatology, and remote sensing applications are evaluated. After the common basis of the formulation of radiative transfer problems in the fields of neutron transport and atmospheric optics is established, the essential features of the discrete-ordinates finite-element method are described including the limitations of the method and their remedies. Numerical results are presented for 1-D and 2-D atmospheric radiative transfer problems where integral as well as angular dependent quantities are compared with published results from other calculations and with measured data. These comparisons provide a verification of the discrete-ordinates results for a wide spectrum of cases with varying degrees of absorption, scattering, and anisotropic phase functions. Accuracy and computational speed are also discussed. Since practically all discrete-ordinates codes offer a builtin adjoint capability, the general concept of the adjoint method is described and illustrated by sample problems. Our general conclusion is that the strengths of the discrete-ordinates finite-element method outweight its weaknesses. We demonstrate that existing general-purpose discrete-ordinates codes can provide a powerful tool to analyze radiative transfer problems through the atmosphere, especially when 2-D geometries must be considered.

© 1985 Optical Society of America

Full Article  |  PDF Article
More Like This
Coupled atmosphere/canopy model for remote sensing of plant reflectance features

Siegfried A. W. Gerstl and Andrew Zardecki
Appl. Opt. 24(1) 94-103 (1985)

Application of the 2-D discrete-ordinates method to multiple scattering of laser radiation

A. Zardecki, S. A. W. Gerstl, and J. F. Embury
Appl. Opt. 22(9) 1346-1353 (1983)

Radiative transfer in the atmosphere–ocean system: the finite-element method

Barbara Bulgarelli, Viatcheslav B. Kisselev, and Laura Roberti
Appl. Opt. 38(9) 1530-1542 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.