Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Deposition error compensation for optical multilayer coatings. I. Theoretical description

Not Accessible

Your library or personal account may give you access

Abstract

The manufacture of complicated optical coatings consisting of many layers of different thicknesses can be a challenge, especially if the deposition technique does not produce dense layers. Deposition errors in a layer can affect not only the desired performance of a multilayer, but can also lead to a complete breakdown of the monitoring and control of subsequent layers. The best chance to achieve the desired optical performance of a multilayer involves deposition error compensation. In this process, the construction parameters of a completed layer are evaluated to determine if any deposition errors have occurred and then the remaining layers of the multilayer system are reoptimized to compensate for any errors made. This paper describes a versatile deposition error compensation program developed at the National Research Council of Canada for the simulation and real-time control of the manufacture of multilayers composed of dielectric or absorbing films. To model porous layers, an effective medium theory approach is used to relate the optical constants of the layer in vacuum and air to the microstructure of the layer. In the simulation mode, random errors are applied to the thickness and porosity of the layers and measurement errors are also included. The best monitoring strategy for the manufacture of a given multilayer is established on the basis of statistical information obtained from a number of these simulations. In this paper the results of calculations on the effectiveness of various monitoring strategies are presented for a sharp edge filter produced by three different physical vapor deposition methods. An extensive list of references to previous papers dealing with sources of errors during deposition is also provided.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system

Brian T. Sullivan and J. A. Dobrowolski
Appl. Opt. 32(13) 2351-2360 (1993)

Practical magnetron sputtering system for the deposition of optical multilayer coatings

J. A. Dobrowolski, James R. Pekelsky, R. Pelletier, M. Ranger, Brian T. Sullivan, and A. J. Waldorf
Appl. Opt. 31(19) 3784-3789 (1992)

High-rate automated deposition system for the manufacture of complex multilayer coatings

Brian T. Sullivan, Glenn A. Clarke, Takayuki Akiyama, Norman Osborne, Martial Ranger, J. A. Dobrowolski, Louisa Howe, Akira Matsumoto, Yizhou Song, and Kazuo Kikuchi
Appl. Opt. 39(1) 157-167 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved