Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Extinction of visible and infrared beams by falling snow

Not Accessible

Your library or personal account may give you access

Abstract

Classical optics holds that the extinction cross of particles should be equal to twice their geometric cross section, in the limit where the particles are much larger than the wavelength. It follows that the extinction coefficient of such large scatterers should be independent of wavelength. Snowflakes are much larger than the wavelengths of visible and infrared radiation, yet many investigators have found that the visible and infrared extinction coefficient of falling snow measured with transmissometers is wavelength dependent. This dependency is known to be a result of the scattering contribution to the transmissometer signal. Furthermore, many measurements in the visible and infrared show that extinction values measured simultaneously with two transmissometers are linearly related up to at least 12 km−1. The slope depends on the wavelengths and optical characteristics of the transmissometers. We show that for small values of extinction, the observations can be explained by taking into account single-scattering contributions to transmissometer signals. For high values of extinction, a multiple-scattering model gives good agreement with measurements.

© 1992 Optical Society of America

Full Article  |  PDF Article
More Like This
Visible and infrared extinction in falling snow

Mary Ann Seagraves
Appl. Opt. 25(7) 1166-1169 (1986)

Forward-scattering corrected extinction by nonspherical particles

Craig F. Bohren and Gary Koh
Appl. Opt. 24(7) 1023-1029 (1985)

Extinction of high-power laser radiation under adverse weather conditions

Andreas Peckhaus, Peter Becker, Carsten Pargmann, Thomas Hall, and Frank Duschek
Appl. Opt. 62(27) 7127-7138 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved